版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田一中等中学2025届高三考前热身数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.02.已知,则的大小关系是()A. B. C. D.3.设全集,集合,则=()A. B. C. D.4.已知函数且,则实数的取值范围是()A. B. C. D.5.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.26.若,则下列不等式不能成立的是()A. B. C. D.7.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.628.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.9.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.10.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.11.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.12.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.设实数满足约束条件,则的最大值为______.14.已知全集,集合则_____.15.已知向量,,且,则实数m的值是________.16.在边长为的菱形中,点在菱形所在的平面内.若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。18.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.19.(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.20.(12分)已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:温度/℃14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,,参考数据:.21.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.22.(10分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.2、B【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.3、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.4、B【解析】
构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.5、D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.6、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.7、B【解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.8、C【解析】
设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.9、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.10、D【解析】
根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.11、B【解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.12、A【解析】
依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且考点:线性规划.14、【解析】
根据补集的定义求解即可.【详解】解:.故答案为.【点睛】本题主要考查了补集的运算,属于基础题.15、1【解析】
根据即可得出,从而求出m的值.【详解】解:∵;∴;∴m=1.故答案为:1.【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算.16、【解析】
以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设得,解得,,或,显然得出的是定值,取则,.故答案为:.【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)l的普通方程;C的直角坐标方程;(2).【解析】
(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)将直线的参数方程,代入曲线的方程,利用参数的几何意义即可得出,从而建立关于的方程,求解即可.【详解】(1)由直线l的参数方程消去参数t得,,即为l的普通方程由,两边乘以得为C的直角坐标方程.(2)将代入抛物线得由已知成等比数列,即,,,整理得(舍去)或.【点睛】熟练掌握极坐标与直角坐标的互化公式、方程思想、直线的参数方程中的参数的几何意义是解题的关键.18、(1),;(2).【解析】
(1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程;(2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得.【详解】(1)直线的参数方程是为参数),消去参数得直角坐标方程为:.转换为极坐标方程为:,即.曲线的参数方程是(为参数),转换为直角坐标方程为:,化为一般式得化为极坐标方程为:.
(2)由于,得,.所以,所以,由于,所以,所以.【点睛】本题主要考查参数方程与普通方程的互化、直角坐标方程与极坐标方程的互化,熟记公式即可,属于常考题型.19、(1),(2)【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范围.试题解析:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].20、(1)作图见解析;更适合(2)(3)预报值为245【解析】
(1)由散点图即可得到答案;(2)把两边取自然对数,得,由计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.∴,则关于的回归方程为;(3)当时,计算可得;即温度为27℃时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.21、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系.点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理.存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备.(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性.22、(1)见解析(2)【解析】
(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4教育信息化与信息化人才培养
- 单板加工市场风险识别与应对措施考核试卷
- 2025年度临床试验合同主体临床试验合同续签与变更4篇
- 2025版学生暑假工就业保障及培训合同3篇
- 2025年增资协议签署注意事项
- 2025年健身营销推广合同
- 2025年健身器材产品责任保险合同
- 二零二五年度户外木饰面景观工程设计合同2篇
- 二零二五版电影主题展览赞助协议3篇
- 二零二五年度2025安保员聘用及安全教育培训服务合同3篇
- 不同茶叶的冲泡方法
- 光伏发电并网申办具体流程
- 建筑劳务专业分包合同范本(2025年)
- 企业融资报告特斯拉成功案例分享
- 五年(2020-2024)高考地理真题分类汇编(全国版)专题12区域发展解析版
- 《阻燃材料与技术》课件 第8讲 阻燃木质材料
- 新急救常用仪器设备操作流程
- 北仑区建筑工程质量监督站监督告知书
- 法考客观题历年真题及答案解析卷一(第1套)
- 央国企信创白皮书 -基于信创体系的数字化转型
- 6第六章 社会契约论.电子教案教学课件
评论
0/150
提交评论