版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学二轮复习讲义——选填题部分第6讲三角函数单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下.题型一、三角恒等变换考点1.同角之间的关系、诱导公式1.已知角α的顶点与原点O重合,始边与x轴的正半轴重合,若它的终边经过点P(2,1),则tan(2α+πA.﹣7 B.−17 C.1【解答】解:根据题意,tanα=1∴tan2α=2tanα∴tan(2α+π故选:A.2.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=−12【解答】解:sinα+cosβ=1,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=−1故答案为:−13.若tanα=34,则cos2α+2sin2A.6425 B.4825 C.1 【解答】解:∵tanα=3∴cos2α+2sin2α=cos故选:A.4.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ−π【解答】解:∵θ是第四象限角,∴−π2+2kπ<θ<2kπ又sin(θ+π4)∴cos(θ+π4)∴cos(π4−θ)=sin(θ+π4)=35,sin(π则tan(θ−π4)=﹣tan(π4故答案为:−4考点2.两角和与差角公式、二倍角公式、辅助角公式1.已知向量a→=(1,sinα),b→=(2,cosα),且a→∥b【解答】解:∵a→∥b→,∴2sinα﹣cosα=0,即cosα=2sin则sinα+2cosαcosα−3sinα2.已知sinx﹣siny=−23,cosx﹣cosy=23且x,y为锐角,则tan(x﹣y)=【解答】解:∵sinx﹣siny=−23,cosx﹣cosy两式平方相加得:cos(x﹣y)=5∵x、y为锐角,sinx﹣siny<0,∴x<y,∴sin(x﹣y)=−1∴tan(x﹣y)=sin(x−y)故答案为:−23.已知sinθ+sin(θ+π3)=1,则sin(θA.12 B.33 C.23【解答】解:∵sinθ+sin(θ+π∴sinθ+12sinθ+3即32sinθ+32得3(12cosθ+32即3sin(θ+π得sin(θ+π6故选:B.4.已知α∈(π2,π),并且sinα+2cosα=25,则tan(A.−1731 B.−3117 C.−【解答】解:由sinα+2cosα=25,得sin2α+4sinαcosα+4cos2α所以(1﹣cos2α)+4sinαcosα+4(1﹣sin2α)=4整理得cos2α﹣4sinαcosα+4sin2α=121所以(cosα﹣2sinα)2=121因为α∈(π2,π),所以sinα>0所以cosα﹣2sinα=−115,又sinα+2cosα则sinα+2cosαcosα−2sinα=−2解得tanα=−24所以tan(α+π4)故选:A.5.若α,β∈(0,π2),cos(α−β2)=3A.−32 B.−12 C.【解答】解:由α,β∈(0,π则α−β2∈(−又cos(α−β2)=所以α−β2解得α=β=π3,所以cos(α+β)故选:B.6.已知tan(α﹣β)=12,tanβ=−17,且α,β∈(0,πA.π4 B.πC.−3π4 【解答】∵tan(α﹣β)=tanα−tanβ1+tanαtanβ=即tanα=∵α,β∈(0,π)且tanπ4=1,tan∴α∈(0,π4),β∈(3π4,即2α﹣β∈(﹣π,−π∴tan(2α﹣β)=tanα+tan(α−β)即2α﹣β=−故选:C.7.已知α∈(0,π2),2sin2α﹣cos2A.15 B.55 C.35【解答】解:因为2sin2α﹣cos2α=1,所以4sinαcosα﹣2cos2α+1=1,即2sinαcosα=cos2α,因为α∈(0,π2可得sinα=12cos所以sin2α+cos2α=14cos2α+cos2α=1,可得cos2α=45故选:D.8.若α∈(0,π),且sinα﹣2cosα=2,则tanα2A.3 B.2 C.12 D.【解答】解:∵sinα﹣2cosα=2,∴sinα=2+2cosα,则2sinα又α∈(0,π),∴cosα2≠0,则tan故选:B.考点3.三角恒等变换综合1.若sinβ=3sin(2α﹣β),则2tan(α﹣β)+tanα的值为0.【解答】解:∵sinβ=3sin(2α﹣β),∴sin[α﹣(α﹣β)]=3sin[(α﹣β)+α],∴sinαcos(α﹣β)﹣cosαsin(α﹣β)=3sin(α﹣β)cosα+3cos(α﹣β)sinα,∴﹣2sinαcos(α﹣β)=4cosαsin(α﹣β),即tanα=﹣2tan(α﹣β),∴2tan(α﹣β)+tanα=0,故答案为:0.2.已知2+5cos2α=cosα,cos({2α+β})=45,α∈(0,π2),β∈(3π2,2A.−45 B.44125 C.−【解答】解:因为2+5cos2α=2+5(2cos2α﹣1)=cosα,整理可得:10cos2α﹣cosα﹣3=0,解得cosα=35,或又因为α∈(0,所以cosα=35,可得sinα∴π4<α可得cos2α=2cos2α﹣1=−725,sin2α=2sinαcosα因为cos(2α+β)=45所以2α+β∈(2π,2π+2π故sin(2α+β)=3所以cosβ=cos[(2α+β)﹣2α]=cos(2α+β)cos2α+sin(2α+β)sin2α=45×(−故选:B.3.若SKIPIF1<0,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:SKIPIF1<0,即:SKIPIF1<0,即:SKIPIF1<0所以SKIPIF1<0故选:C[方法二]:特殊值排除法解法一:设β=0则sinα+cosα=0,取SKIPIF1<0,排除A,B;再取α=0则sinβ+cosβ=2sinβ,取βSKIPIF1<0,排除D;选C.[方法三]:三角恒等变换SKIPIF1<0所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0故选:C.4.若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】由题,SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0.故选:D.5.已SKIPIF1<0,且SKIPIF1<0则SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】SKIPIF1<0平方得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故选:D.6.已知角SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【详解】因为SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.故选:C.题型二、三角函数的图像考点1.伸缩变换1.要得到函数y=3sin(2x+π3)的图象,只需要将函数y=3cos2A.向右平行移动π12个单位B.向左平行移动π12个单位C.向右平行移动π6个单位D.向左平行移动π6【解答】解:函数y=3sin(2x+π3)=3cos[π2−(2x+π3)]=3cos(π6−2故把函数y=3cos2x的图象向右平行移动π12个单位,可得函数y=3sin(2x+故选:A.2.已知曲线C1:y=cosx,C2:y=sin(2x+2πA.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线CD.把C1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线【解答】解:曲线C2:y=sin(2x+2π3)=cos(2x把C1:y=cosx上各点的横坐标缩短到原来的12,纵坐标不变,可得y=cos2x再把得到的曲线向左平移π12个单位长度,可以得到曲线C2:y=cos(2x+π6)=sin(2故选:D.3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(π4)=2,则f(A.﹣2 B.−2 C.2 【解答】解:∵f(x)是奇函数,∴φ=0,∵f(x)的最小正周期为π,∴2πω=π,得则f(x)=Asin2x,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).则g(x)=Asinx,若g(π4)=2,则g(π4)=Asinπ4=则f(x)=Asin2x,则f(3π8)=2sin(2×3π8=2sin故选:C.4.函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移π2个单位后,与函数y=sin(2x+π3)的图象重合,则φ=【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移π2y=cos[2(x−π2)+φ]=cos(2x+φ﹣而函数y=sin(2x+π3)由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移π2个单位后,与函数y=sin(2x+2x+φ﹣π=2x+π3−π符合﹣π≤φ<π.故答案为5π65.若y=|3sin(ωx+π12)+2|的图象向右平移π6个单位后与自身重合,且y=tanωx的一个对称中心为(π48,0),则【解答】解:∵y=|3sin(ωx+π12)+2|的图象向右平移∴π6=k•2πω,k则ω=12k,k∈N,①∵y=tanx的对称中心为(kπ2∴y=tanωx(ω∈N*)的对称中心是(kπ2ω又(π48,0)是函数y=tanωx(ω∈N*∴kπ2ω=π48(∴ω=24k,k∈N,②由①②知,ω的最小正值为24.故答案是:24.6.将函数f(x)=3sin2x的图象向右平移φ(0<φ<π2)个单位后得到函数g(x)的图象,若对满足|f(x1)﹣g(x2)|=6的x1,x2,有|x1﹣x2|min=πA.5π12 B.π3 C.π4【解答】解:由于函数f(x)=3sin2x的图象向右平移φ(0<φ<π2)个单位后得到函数g(x)=3sin(2x﹣2所以|f(x1)﹣g(x2)|=3|sin2x1﹣sin(2x2﹣2φ)|=6,由于﹣1≤sin2x1≤1,﹣1≤sin(2x2﹣2φ)≤1.所以sin2x1和sin(2x2﹣2φ)的值中,一个为1,一个为﹣1.不妨设sin2x1=1,sin(2x2﹣2ϕ)=﹣1,则2x1=2k1π+π2,2x2﹣2φ=2k所以2x1﹣2x2+2φ=2(k1﹣k2)π+π(k1﹣k2∈Z),得到:|x由于0<φ<π2,所以故当k1﹣k2=0时,|x1−x故选:B.考点2.求解析式1.图是函数y=Asin(ωx+φ)(x∈R)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将yA.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12D.向左平移π6【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(−π6,0)可得φ的一个值为故图象中函数的一个表达式是y=sin(2x+π即y=sin2(x+π所以只需将y=sinx(x∈R)的图象上所有的点向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的1故选:A.2.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,|φ|<π2)的部分图象如图所示,若f(α)=3A.−34 B.−18 C.【解答】解:由题设图象知,A=2,周期T=4(7π6−2π∴ω=2π∵点(2π3∴2sin(2π3+φ)=2,即sin(2π又∵−π2<∴从而2π3+φ=π2故函数f(x)的解析式为f(x)=2sin(x−π由f(α)=32,可得f(α)=2sin(α−π6)=32那么sin(2α+π6)=cos(π2−2α−π6)=cos(2α−π3)=1故选:B.3.已知函数f(x)=Asin(π3x+ϕ),x∈R,A>0,0<ϕ<π2.y=f(x)的部分图象如图所示,P,Q分别为该图象的最高点和最低点,PR垂直x轴于点R,R的坐标为(1,0),若∠A.12 B.32 C.34【解答】解:由题意得,函数f(x)的最小正周期T=2π由R的坐标为(1,0),点P的坐标为(1,A),设点Q的坐标为(4,﹣A),过点Q做x轴的垂线,设垂足为M,则RM=3,∵∠PRQ=2π3,∴∠MRQ∴|MQ|=A=3×tanπ6由题意得,T=2π∵P(1,A)在函数f(x)=Asin(π3x+Φ∴sin(π3+又∵0<Φ<π∴Φ=π∴f(x)=3sin(π3x+π6),f(0)故选:B.4.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g(x)=Acos(ωx+φ)(x∈A.函数g(x)的图象关于点(π4,0B.函数g(x)在[−π8C.函数g(x)的图象关于直线x=π8D.函数h(x)=cos2x的图象上所有点向左平移π4个单位得到函数g(x【解答】解:根据函数f(x)=Atan(ωx+φ)(ω>0,|φ|<π最小正周期为T=2×(3π8−π8)=π又ω•π8+φ=π2+kπ,k∈Z,φ=π4∴φ=π4,∴f(0)=Atanπ∴函数g(x)=cos(2x+πx=π4时,g(π4)=cos(πg(x)的图象不关于点(π4,0)对称,x∈[−π8,3π8]时,2x+πg(x)在[−π8,x=π8时,g(π8g(x)的图象不关于直线x=π8对称,h(x)=cos2x的图象上所有点向左平移π4得h(x+π4)=cos2(x+π4不是函数g(x)的图象,D错误.故选:B.题型三、三角函数的最值、取值范围1.函数f(x)=15sin(x+π3)+cos(A.65 B.1 C.35 【解答】解:函数f(x)=15sin(x+π3)+cos(x−π6)=15sin(x+π3)+cos(﹣x=65sin(x+π故选:A.2.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是−33【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=12或cosx=可得此时x=π3,π或∴y=2sinx+sin2x的最小值只能在点x=π3,π或5π3计算可得f(π3)=332,f(π)=0,f(5π3∴函数的最小值为−3故答案为:−33.已知函数f(x)=2sin2(π4+x)−3cos2x,x∈[π4,π2].若不等式|f(x)﹣m|<2在x∈[π4,π2【解答】解:已知函数f(x)=2∵x∈[π4,π∴sin(2x−π∴f(x)min=2×12+1=2,f∵不等式|f(x)﹣m|<2在x∈[π4,π2]上恒成立,∴﹣2<f(x即f(x)﹣2<m<f(x)+2在x∈[π因为f(x)在[π∴1<m<4.4.已知函数SKIPIF1<0,下列说法错误的是(
)A.SKIPIF1<0是偶函数 B.SKIPIF1<0是周期为π的函数C.SKIPIF1<0在区间SKIPIF1<0上单调递减 D.SKIPIF1<0的最大值为SKIPIF1<0【详解】对选项A,SKIPIF1<0,定义域为R,SKIPIF1<0,所以SKIPIF1<0为偶函数,故A正确.对选项B,因为SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0的周期为SKIPIF1<0,故B正确.对选项C,SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0在区间SKIPIF1<0上单调递减,故C正确.对选项D,当SKIPIF1<0时,SKIPIF1<0,因为SKIPIF1<0,SKIPIF1<0,此时SKIPIF1<0.当SKIPIF1<0时,SKIPIF1<0,因为SKIPIF1<0,SKIPIF1<0,此时SKIPIF1<0.因为SKIPIF1<0是周期为π的函数,所以SKIPIF1<0,故D错误.故选:D题型四、三角函数的性质考点1.三角函数的单调性1.函数y=sin(−2x+π3)的单调递减区间为[kπ−π12,kπ+5π【解答】解:由于函数y=sin(−2x+π3)=−sin(2x−π3),本题即求函数令2kπ−π2≤2x−π3≤2kπ+π2,k∈z,可得k故函数y=sin(−2x+π3)的单调递减区间为[kπ−π12故答案为[kπ−π12,kπ+5π12],2.已知ω>0,函数f(x)=sin(ωx+π4)在区间(π2,πA.[12,54] B.【解答】解:法一:令:ω=2⇒(ωx+π4)∈[ω=1⇒(ωx+π4)∈[3π4法二:ω(π−π2得:π2故选:A.3.已知函数f(x)=4sinωx2•cosωx2(ω>0)在区间[−π2,A.(0,1] B.(0,34] C.[12,34【解答】解:函数f(x)=4sinωx2•cosωx2=2sinωx则f(x)在[−π2ω,又f(x)在[−π2,则[−π2ω,π2ω]⊇[−得不等式组−π又ω>0,∴解得0<ω≤3又函数f(x)在区间[0,π]上恰好取得一次最大值,根据正弦函数的性质可知ωx=2kπ+π2,k∈即函数在x=2kπω+π∴ω≥1综上所述,可得ω∈[12,3故选:C.考点2.三角函数的奇偶性1.已知f(x)=sin(x+φ)+cos(x+φ)为奇函数,则φ的一个取值是()A.π2 B.−π2 C.π【解答】解:∵函数f(x)是奇函数,∴f(0)=0,即f(0)=sinφ+cosφ=0,得sinφ=﹣cosφ,即tanφ=﹣1,即φ=−π4+kπ,k则当k=0时,φ=−π故选:D.2.已知f(x)=3sin2x+acos2x,其中a为常数.f(x)的图象关于直线x=π6对称,则f(A.[−35π,−16π] B.[−712π,−13π] C.[−16【解答】解:由题意知:y=3sin2x+acos2x=9+a2sin(2x当x=π6时函数y=3sin2x+acos2x取到最值±将x=π6代入可得:3sin(2×π6)+acos(2×π解得:a=3故f(x)=3sin2x+3cos2x=23sin(2x+由于[−712π,−13π]∈[−5π6,−π故选:B.3.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为π2【解答】解:∵f(x)=sinωx+cosωx=2sin(ωx+∵函数f(x)在区间(﹣ω,ω)内单调递增,ω>0∴2kπ−π2≤ωx+π4≤2kπ+π2,k∈Z可解得函数f(x)的单调递增区间为:[∴可得:﹣ω≥2kπ−3π4ω①,ω≤2kπ+π∴解得:0<ω2≤3π4−2kπ且0<ω2≤2kπ+π4解得:−18<k<38∴可解得:k=0,又∵由ωx+π4=kπ+π2,可解得函数f(x)的对称轴为:x=∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=π4,可解得:ω故答案为:π2考点3.三角函数的周期性与对称性1.已知函数f(x)=sin(ωx+π4)(ω>0)在(π12,π3)上有最大值,但没有最小值,则ω【解答】解:要求函数f(x)=sin(ωx+π4)(ω>0)在(π12所以π3−π12<T且存在k∈Z,使得−π2+2kπ<ω•π12+π4<π2+因为0<ω<8,所以π2所以−18<k<所以−π2<ω•π12由−π2<ω•π12+由π2<ω•π3+π所以34<故答案为(342.已知函数f(x)=2sin(ωx+π4)(ω>0)的图象在区间[0,1]上恰有3个最高点,则A.[19π4,27π4) B.[9π2,13π2) C.[17π4,25π4)【解答】解:函数f(x)=2sin(ωx+π4)(∵x∈[0,1]上,∴ωx+π4∈[π4图象在区间[0,1]上恰有3个最高点,∴9π2解得:17π4故选:C.3.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[π6,π2]上具有单调性,且f(π2)=f(2π3)=﹣f(π6),则f(x【解答】解:由f(π2)=f(2π3),可知函数f(x)的一条对称轴为x则x=π2离最近对称轴距离为又f(π2)=﹣f(π6),则f(x)有对称中心(由于f(x)在区间[π6,π则π2−π6≤12T⇒T≥故答案为:π.4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=−π4为y=f(x)图象的对称轴,x=π4为f(x)的零点,且fA.13 B.12 C.9 D.5【解答】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=−π4为y=f(x)图象的对称轴,x=f(x)在区间(π12,π6)上单调,∴周期T≥2×(π6−π∵x=−π4为y=f(x)图象的对称轴,x=π4为f(x)的零点,∴2n+14•2πω=π2,当ω=11时,由题意可得π4×11+φ=kπ,φ=π4,函数为y=f(x在区间(π12,π6)上,11x+π4∈(7π6,25π12),当ω=9时,由题意可得π4×9+φ=kπ,φ=−π4,函数为y=f(x在区间(π12,π6)上,9x−π4∈(π2则ω的最大值为9,故选:C.5.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|≤π2,−π4为f(x)的零点:且f(x)≤|f(π4)|恒成立,f(xA.11 B.13 C.15 D.17【解答】解:由题意知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤πx=π4为y=f(x)图象的对称轴,x=−π4为∴2n−14•2πω=π2,n∈N*,∴ω=2nf(x)在区间(−π12,∴周期T≥(π24+π12)=π8,即∴要求ω的最大值,结合选项,先检验ω=15,当ω=15时,由题意可得−π4×15+φ=kπ,φ=−π4,函数为y=f(在区间(−π12,π24)上,15x−π4∈此时f(x)在15x−π4=−π则ω的最大值为15,故选:C.6.已知ω>0,函数f(x)=acos2ωx﹣4cosωx+3a,若对任意给定的a∈[﹣1,1],总存在x1,x2∈[0,π2](x1≠x2),使得f(x1)=f(x2)=0,则ωA.2 B.4 C.5 D.6【解答】解:由f(x)=acos2ωx﹣4cosωx+3a=2acos2ωx﹣4cosωx+2a.令cosωx=t,a∈[﹣1,1],令f(x)=0,可得:2a=4tt2+1∴t∈[﹣1,1]即cosωx∈[﹣1,1]上有两个解.那么x1,x2∈[0,π2](x1≠x2∴π∴ω≥6故选:D.题型五、三角函数的零点1.已知函数f(x)=3sinωxcosωx+cos2ωx−12,(ω>0,x∈R),若函数f(x)在区间(πA.(0,512] B.(0,512]∪[5C.(0,58] D.(0,56]∪[【解答】解:函数f(x)=3sinωcosωx+cos2ωx−函数f(x)在区间(π2所以:f(π即:sin(πω+π所以:①sin(πω+π解得:ω∈(0,5②sin(πω+π解得:ω∈[56综上所述:ω∈(0,512]∪[5故选:B.2.已知函数f(x)=2sin(ωx−π6)sin(ωx+π3)(ω>0),若函数g(x)=f(x)+3A.[2,113) B.(2,113) C.[73,10【解答】解:f(x)=2sin(ωx−π6)sin(ωx+π3)=2sin(ωx−π=﹣2cos(ωx+π3)sin(ωx+π3)=﹣sin(2由g(x)=f(x)+32=0得f(x即﹣sin(2ωx+2π3)得sin(2ωx+2π3)∵0≤x≤π∴0≤2ωx≤πω,则2π3≤2ωx+2π∵sin2π3∴要使sin(2ωx+2π3)=32,在0∴2π3+2π≤ωπ+2π得2π≤ωπ<11π3,即2≤ω即ω的取值范围是[2,113故选:A.3.函数f(x)=2sin(2x+π3),g(x)=mcos(2x−π6)﹣2m+3>0,m>0,对任意x1∈[0,π4],存在x2∈[0,π4],使得g(x1)=f(x2)成立,则实数【解答】解:由题意:f(x)=2sin(2x+π当x2∈[0,π4则有:2x2+π3∈[π3当2x2+π3)=π2时,函数当2x2+π3)=5π6时,函数所以:对于x2∈[0,π4],f(x函数g(x)=mcos(2x−π6)﹣2m+3,当x1∈[0,π4则有:2x1−π6∈[−π当2x1−π6=π3时,函数g(当2x1−π6=0时,函数g(x)取得最大值为:所以:对于x1∈[0,π4],g(x)的值域为[−32m+3,任意x1∈[0,π4],存在x2∈[0,π4],使得g(x1)=f(x2)成立,则有:[−32m+3,﹣即:−解得:1≤m≤故答案为[4.设函数SKIPIF1<0在区间SKIPIF1<0恰有三个极值点、两个零点,则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】解:依题意可得SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,要使函数在区间SKIPIF1<0恰有三个极值点、两个零点,又SKIPIF1<0,SKIPIF1<0的图象如下所示:
则SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故选:C.一、单选题1.已知SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【详解】SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故选:B.2.函数SKIPIF1<0的图像可能是(
)A. B.
C.
D.
【答案】A【详解】函数SKIPIF1<0的定义域为SKIPIF1<0,因为SKIPIF1<0,所以函数SKIPIF1<0为奇函数,函数图像关于原点对称,故排除C,D,当SKIPIF1<0时,SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故此时SKIPIF1<0,故排除B.故选:A.3.在平面直角坐标系中,角SKIPIF1<0的顶点为坐标原点,始边在x轴的正半轴上,终边过点SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【详解】因为角SKIPIF1<0的终边经过点SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故选:B4.设SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】由题意SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0.故选:C5.函数SKIPIF1<0的最小正周期是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】SKIPIF1<0,将函数图象在x轴下方部分翻折到x轴上方,所以最小正周期为SKIPIF1<0.故选:C.6.将函数SKIPIF1<0(SKIPIF1<0)的图象向左平移SKIPIF1<0个单位长度,得到偶函数SKIPIF1<0的图象,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】将SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,得到SKIPIF1<0的图象,因为SKIPIF1<0为偶函数,且SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0.故选:A7.将函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度后得到函数SKIPIF1<0的图象,若直线SKIPIF1<0是SKIPIF1<0图象的一条对称轴,则SKIPIF1<0的值可能为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【详解】由题意SKIPIF1<0,因为直线SKIPIF1<0是SKIPIF1<0图象的一条对称轴,所以SKIPIF1<0,则SKIPIF1<0,对比选项可知当SKIPIF1<0时,SKIPIF1<0.故选:B.8.已知函数SKIPIF1<0,若SKIPIF1<0在区间SKIPIF1<0上的值域是SKIPIF1<0,则a的取值范围为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】由SKIPIF1<0可得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,要使SKIPIF1<0在区间SKIPIF1<0上的值域是SKIPIF1<0,则SKIPIF1<0,解得SKIPIF1<0,故选:A9.已知函数SKIPIF1<0在SKIPIF1<0上存在最值,且在SKIPIF1<0上单调,则SKIPIF1<0的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】当SKIPIF1<0时,因为SKIPIF1<0,则SKIPIF1<0,因为函数SKIPIF1<0在SKIPIF1<0上存在最值,则SKIPIF1<0,解得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,因为函数SKIPIF1<0在SKIPIF1<0上单调,则SKIPIF1<0,所以SKIPIF1<0其中SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又因为SKIPIF1<0,则SKIPIF1<0.当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0.又因为SKIPIF1<02,因此SKIPIF1<0的取值范围是SKIPIF1<0.故选:C.10.如图,直线SKIPIF1<0与函数SKIPIF1<0的图象的三个相邻的交点为A,B,C,且SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】因为SKIPIF1<0,SKIPIF1<0,所以相邻两对称轴间的距离SKIPIF1<0,即周期SKIPIF1<0,所以SKIPIF1<0,排除BD,当SKIPIF1<0时,代入SKIPIF1<0,可得SKIPIF1<0,满足题意,代入SKIPIF1<0,可得SKIPIF1<0,不符合题意,故A正确C错误.故选:A11.将函数SKIPIF1<0的图像向左平移SKIPIF1<0个单位长度后得到函数SKIPIF1<0的图像,再将SKIPIF1<0的图像上各点的纵坐标不变、横坐标变为原来的SKIPIF1<0(SKIPIF1<0)倍,得到函数SKIPIF1<0的图像,且SKIPIF1<0在区间SKIPIF1<0上恰有两个极值点、两个零点,则SKIPIF1<0的取值范围为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】法一:由题意,得SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0.设SKIPIF1<0,则SKIPIF1<0在SKIPIF1<0上恰有两个极值点和两个零点.结合图像知SKIPIF1<0,解得SKIPIF1<0.法二:验证排除法.由题意可知SKIPIF1<0,所以SKIPIF1<0,根据四个选项的特点,只有选项C中不含SKIPIF1<0,所以只需要验证SKIPIF1<0时的情况,若SKIPIF1<0,则SKIPIF1<0,令SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,结合图像知此范围内由两个零点,一个极小值点,不符合题意,所以SKIPIF1<0,故选C.法三:由题可知,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,分别令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由题意知SKIPIF1<0解得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,分别令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由题意知SKIPIF1<0解得SKIPIF1<0,综上所述,SKIPIF1<0.故选:C.12.已知函数SKIPIF1<0,则下列说法中正确的是(
)A.若函数SKIPIF1<0的最小正周期为π,则SKIPIF1<0在SKIPIF1<0上不单调B.若函数SKIPIF1<0的最小正周期为π,则直线SKIPIF1<0是函数SKIPIF1<0图象的一条对称轴C.若函数SKIPIF1<0在SKIPIF1<0上恰有3个极值点,则SKIPIF1<0D.若函数SKIPIF1<0在SKIPIF1<0上单调,则SKIPIF1<0【答案】C【详解】SKIPIF1<0.对于A,若SKIPIF1<0的最小正周期为π,则SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0在SKIPIF1<0上为增函数,故A错误;对于B,由于SKIPIF1<0,则SKIPIF1<0,直线SKIPIF1<0不是SKIPIF1<0图象的对称轴,故B错误;对于C,令SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上恰有3个极值点,则当SKIPIF1<0时,SKIPIF1<0取极值,则有SKIPIF1<0,得SKIPIF1<0,故C正确;对于D,令SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上单调,则SKIPIF1<0,解得SKIPIF1<0,故D错误.故选:C.13.将函数SKIPIF1<0图象上所有点的横坐标缩小为原来的SKIPIF1<0,再向右平移SKIPIF1<0个单位长度,得到函数SKIPIF1<0的图象,若SKIPIF1<0在SKIPIF1<0上有两个不同的零点SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【详解】将函数SKIPIF1<0图象上所有点的横坐标缩小为原来的SKIPIF1<0,得到SKIPIF1<0的图象,再向右平移SKIPIF1<0个单位长度,得到SKIPIF1<0的图象.当SKIPIF1<0时,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,则关于t的方程SKIPIF1<0在SKIPIF1<0上有两个不等的实数根SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0.故选:B14.已知函数SKIPIF1<0,若函数SKIPIF1<0的最小正周期为SKIPIF1<0,且SKIPIF1<0对任意的SKIPIF1<0恒成立,则SKIPIF1<0的最小值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】由SKIPIF1<0,所以函数SKIPIF1<0的最小正周期是SKIPIF1<0,于是函数SKIPIF1<0的最小正周期是SKIPIF1<0,因此函数SKIPIF1<0的最小正周期为SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0,因此SKIPIF1<0.由于SKIPIF1<0对任意的SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0处取得最小值,于是SKIPIF1<0,即SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0的最小值为SKIPIF1<0.故选:C二、多选题15.已知函数SKIPIF1<0的部分图象如图所示,则下列说法正确的是(
)A.函数SKIPIF1<0的图象关于直线SKIPIF1<0对称B.函数SKIPIF1<0的图象关于点SKIPIF1<0对称C.函数SKIPIF1<0在SKIPIF1<0的值域为SKIPIF1<0D.将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位,所得函数为SKIPIF1<0【答案】ACD【详解】由图可知SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又函数图象最低点为SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,由题意SKIPIF1<0,所以只能SKIPIF1<0,所以SKIPIF1<0由A选项分析可知SKIPIF1<0,但SKIPIF1<0,从而函数SKIPIF1<0的图象关于直线SKIPIF1<0对称,故A选项正确;但SKIPIF1<0,从而函数SKIPIF1<0的图象不关于SKIPIF1<0对称,故B选项错误;当SKIPIF1<0时,SKIPIF1<0,而函数SKIPIF1<0在SKIPIF1<0上单调递增,在SKIPIF1<0上单调递减,SKIPIF1<0所以函数SKIPIF1<0在SKIPIF1<0的值域为SKIPIF1<0,故C选项正确;若将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位,则得到的新的函数解析式为SKIPIF1<0,故D选项正确.故选:ACD.16.函数SKIPIF1<0的部分图象如图所示,则下列说法中正确的是(
)A.SKIPIF1<0B.SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后得到的新函数是偶函数C.SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后得到的新函数是奇函数D.若方程SKIPIF1<0在SKIPIF1<0上有且只有6个根,则SKIPIF1<0【答案】ACD【详解】对于A项:由SKIPIF1<0,得SKIPIF1<0,则SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因为SKIPIF1<0的图象过点SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0的单调递增区间内,所以SKIPIF1<0,所以SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故A项正确.对于B、C项:SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后得到SKIPIF1<0SKIPIF1<0,为奇函数,故B项错误,C项正确.对于D项:由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,该方程在SKIPIF1<0上有SKIPIF1<0个根,从小到大依次设为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若存在第SKIPIF1<0个根,则SKIPIF1<0,所以SKIPIF1<0.故D项正确.故选:ACD.17.已知函数SKIPIF1<0,则(
)A.SKIPIF1<0为偶函数B.SKIPIF1<0是SKIPIF1<0的一个单调递增区间C.SKIPIF1<0D.当SKIPIF1<0时,SKIPIF1<0【答案】ACD【详解】因为SKIPIF1<0的定义域为SKIPIF1<0,关于原点对称,且SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是偶函数,故A正确;因为SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0不是函数的递增区间,故B不正确;SKIPIF1<0,故C正确;因为当SKIPIF1<0时,SKIPIF1<0,所以SKIPIF1<0,同理,当SKIPIF1<0时,SKIPIF1<0,即SKIPIF1<0时,SKIPIF1<0,故D正确.故选:ACD.18.已知函数SKIPIF1<0,则(
)A.SKIPIF1<0的图象关于直线SKIPIF1<0轴对称B.SKIPIF1<0的图象关于点SKIPIF1<0中心对称C.SKIPIF1<0的所有零点为SKIPIF1<0D.SKIPIF1<0是以SKIPIF1<0为周期的函数【答案】AC【详解】对于A:因为SKIPIF1<0,所以SKIPIF1<0的图象关于直线SKIPIF1<0轴对称,故A正确;对于B:因为SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的图象不关于点SKIPIF1<0中心对称,B错误.对于C:因为SKIPIF1<0,注意到SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的所有零点为SKIPIF1<0,故C正确;对于D:因为SKIPIF1<0,所以SKIPIF1<0不是SKIPIF1<0的周期,故D错误;故选:AC.19.已知函数SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,它们的最小正周期均为SKIPIF1<0,SKIPIF1<0的一个零点为SKIPIF1<0,则(
)A.SKIPIF1<0的最大值为2B.SKIPIF1<0的图象关于点SKIPIF1<0对称C.SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上均单调递增D.将SKIPIF1<0图象向左平移SKIPIF1<0个单位长度可以得到SKIPIF1<0的图象【答案】BCD【详解】因为SKIPIF1<0的最小正周期为SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0的一个零点为SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,故A错误;又SKIPIF1<0,故SKIPIF1<0的图象关于点SKIPIF1<0对称,B正确;对于SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上单调递增,对于SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省眉山市仁寿县2024-2025学年高二上学期1月期末联考地理试卷(含答案)
- 湖南省益阳市沅江市两校联考2024-2025学年九年级上学期1月期末考试历史试卷(含答案)
- 广东省揭阳市普宁市2024-2025学年高二上学期期末考试英语试题(无答案)
- 2024物业租赁合同履行保证
- 色酒调酒知识培训课件
- 福建省南平市九三英华高级中学高一英语模拟试卷含解析
- 2024语音识别与自然语言处理合同
- 2025年度互联网企业新媒体运营实习协议范本3篇
- 2024年音乐会上演艺人委托合同2篇
- 2024年限量版豪宅营销策划与销售代表协议版B版
- 噪声监测服务投标方案
- 分子影像学概论课件
- 中国移动呼叫中心的精细化管理
- (全)2023电气工程师内部考试习题含答案(继保)
- 辣椒栽培技术
- 纪检监察知识题库-案例分析(20题)
- 《笨狼的故事》读书会读书分享PPT课件(带内容)
- 就这样当班主任读书分享
- 某kv送电线路铁塔组立监理细则
- 武艳艳数学思政课教学设计《式与方程的整理复习》
- 气柜安装工程施工方案
评论
0/150
提交评论