陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题含解析_第1页
陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题含解析_第2页
陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题含解析_第3页
陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题含解析_第4页
陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省咸阳市三原南郊中学2025届高考冲刺模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足不等式组,则的最大值为()A. B. C.3 D.22.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.13.双曲线的渐近线方程为()A. B.C. D.4.已知,,,则a,b,c的大小关系为()A. B. C. D.5.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种A. B. C. D.6.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.7.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.49.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.10.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.11.已知角的终边经过点,则A. B.C. D.12.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角的对边长分别为,已知,且,则_________.14.函数的极大值为________.15.设的内角的对边分别为,,.若,,,则_____________16.双曲线的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).18.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.19.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.(1)求;(2)设数列满足,,求数列的通项公式.20.(12分)已知数列满足,,,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.22.(10分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.2、C【解析】

根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.3、A【解析】

将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.4、D【解析】

与中间值1比较,可用换底公式化为同底数对数,再比较大小.【详解】,,又,∴,即,∴.故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.5、B【解析】

间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.6、D【解析】

设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.7、C【解析】

如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.8、D【解析】

根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.9、C【解析】

在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.10、C【解析】

由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题11、D【解析】因为角的终边经过点,所以,则,即.故选D.12、B【解析】

建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为414、【解析】

对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.15、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)16、2【解析】三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】

(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.18、(1)证明见解析(2)证明见解析【解析】

(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知;,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.【详解】(1)依题意,,因为,且,故,故函数在上单调递减,故.(2)依题意,,令,则;而,可知当时,,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.19、(1);(2).【解析】

(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【详解】(1)由题意可得即又因为,所以,所以.(2)由条件及(1)可得.由已知得,所以.又满足上式,所以【点睛】本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.20、(1)证明见解析;(2)【解析】

(1)根据题目所给递推关系式得到,由此证得数列为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和【详解】(1)已知,则,且,则为以3为首相,3为公比的等比数列,所以,.(2)由(1)得:,,①,②①-②可得,则即.【点睛】本小题主要考查根据递推关系式证明等比数列,考查累加法求数列的通项公式,考查错位相减求和法,属于中档题.21、(1)(2)【解析】

(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.22、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论