版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市芝罘区烟台二中2025届高考数学四模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,值域为R且为奇函数的是()A. B. C. D.2.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.3.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.4.若复数满足(是虚数单位),则()A. B. C. D.5.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.06.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.87.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.8.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.9.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.210.点为的三条中线的交点,且,,则的值为()A. B. C. D.11.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.12.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中各项系数之和为32,则展开式中x的系数为_____14.在的展开式中,的系数为______用数字作答15.集合,,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为________①的值可以为2;②的值可以为;③的值可以为;16.在等比数列中,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87918.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.19.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).20.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.21.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.22.(10分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
依次判断函数的值域和奇偶性得到答案.【详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.2、B【解析】
由等比数列的性质求得,再由对数运算法则可得结论.【详解】∵数列是等比数列,∴,,∴.故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.3、B【解析】
由题意知,,由,知,由此能求出.【详解】由题意知,,,解得,,.故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.4、B【解析】
利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.5、B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.6、D【解析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.7、A【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.
故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.8、C【解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.9、D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.10、B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.11、C【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).12、A【解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.二、填空题:本题共4小题,每小题5分,共20分。13、2025【解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14、1【解析】
利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.【详解】二项展开式的通项为令得的系数为故答案为1.【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.15、②③【解析】
根据对称性,只需研究第一象限的情况,计算:,得到,,得到答案.【详解】如图所示:根据对称性,只需研究第一象限的情况,集合:,故,即或,集合:,是平面上正八边形的顶点所构成的集合,故所在的直线的倾斜角为,,故:,解得,此时,,此时.故答案为:②③.【点睛】本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.16、1【解析】
设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等比数列项之间的关系得即可.【详解】设等比数列的公比为.由,得,解得.又由,得.则.故答案为:1【点睛】本题主要考查了等比数列基本量的求解方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.0081(2)见解析,保留乙生产线较好.【解析】
(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:.设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计.那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:.(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,∵,,∴有90%把握认为该企业生产的这种产品的质量指标值与生产线有关.由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,∵,∴保留乙生产线较好.【点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.18、(1)证明见解析;(2)1【解析】
(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1.【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平.19、(1)证明见解析;(2)2【解析】
(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)由题意,在中,,,所以,可得,因为,可得.又由,,平面,所以平面,因为平面,所以.(2)因为,可得,令,,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所以.【点睛】本题主要考查了直线与平面垂直的判定与应用,以及几何体的体积公式的应用,其中解答中熟记线面位置关系的判定定理与性质定理,以及熟练应用几何体的体积公式进行求解是解答的关键,着重考查了推理与计算能力,属于基础题.20、(1);(2)1.【解析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.【详解】(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB≠0,所以sinA=cosA,即:tanA=,因为A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周长a+b+c=5+7=1.【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.21、(1)(2)三个零点【解析】
(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点.另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑安全演讲比赛
- 蒙太梭利培训
- 药物化学抗癫痫药
- 图案填充课程设计
- 低省煤器课程设计温
- 大班攀爬主题课程设计
- 小学生观察写生课程设计
- 九年级班级管理规划
- 英语餐桌礼仪
- 药理学中的抗胆碱酯酶药与胆碱酯酶复活药
- 2024-2025学年重庆七中八年级(上)第一次月考物理试卷(含答案)
- 苏教版九年级上册劳动技术+第1课+校园蔬菜种植【课件】
- 大型活动现场医疗急救预案
- 人教版数学三年级下册-5.4 长方形、正方形面积的计算-教学课件
- 《中外园林史》课程测试题-参考答案 林墨飞
- 2024年新人教版九年级上册化学教学课件 第七单元 课题1 燃料的燃烧(第二课时)
- 网店客服岗位招聘笔试题与参考答案(某大型集团公司)2024年
- 河南省信阳市2024-2025学年高一化学上学期期中教学质量检测试题
- 《民族团结一家亲同心共筑中国梦》主题教案
- 玉溪大红山铁矿二期北采区采矿施工组织设计
- 乐理知识考试题库130题(含答案)
评论
0/150
提交评论