人工智能项目失败的根本原因及其成功的方法_第1页
人工智能项目失败的根本原因及其成功的方法_第2页
人工智能项目失败的根本原因及其成功的方法_第3页
人工智能项目失败的根本原因及其成功的方法_第4页
人工智能项目失败的根本原因及其成功的方法_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ResearchReport

JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY

TheRootCausesofFailure

forArtificialIntelligence

ProjectsandHowThey

CanSucceed

AvoidingtheAnti-PatternsofAI

rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea

transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-

nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes

A

oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5

AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting

enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.

However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto

deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat

theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14

SUMMARY

2

Background

Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI

projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat

only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.

Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-

ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate

risksintheirplanning.

Approach

ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.

Takeaways

OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain

aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe

likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.

IndustryRecommendations

Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:

•Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand

miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.

•Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat

leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.

•Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.

3

•Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel

deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.

•UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.

AcademiaRecommendations

Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:

•Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween

academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.

•Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,

suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.

aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or

reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.

bCiscoAIReadinessIndex.

cKahn,“WantYourCompany’sAIProjecttoSucceed?”

Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow

toexecuteAIprojectsintheirorganizationavoid

someofthemostcommonreasonsforAIproject

failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From

theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes

andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.

AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-

ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork

togethertosolvepressingbusinessproblems.16

IT-typeprojectscanfailformanyreasonsnot

relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,

whichresultsinincreasedcostsforthesponsoring

enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18

Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.

4

Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences

withAI.20Forexample,McKinseyhasconducted

anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22

Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-

vidualsbuildingAIapplicationsasopposedtothe

businessleadersoftheorganization.Abottom-up

approachallowsustodiscusswhyAIprojectsfail

fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting

interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice

surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured

interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.

Methods

Togatherdataforthisreport,weconductedsemi-

structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese

interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-

nization.Weincludedbothtechnicalfailuresand

businessfailureswithinthisdefinition.Eachinter-

vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful

andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses

basedontheinterviewresponses.Theinterviews

wereconductedbetweenAugustandDecember2023.

Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-

endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese

professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees

werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed

towardidentifyingleadershipfailures.

IndustryParticipants

WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail

messages.Potentialparticipantshadatleastfive

yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual

contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected

participantstorepresentavarietyofexperiences

andbackgrounds.Inparticular,weselectedpar-

ticipantsfromdifferentcompanysizes(start-ups,

largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.

Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals

ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.

Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.

5

AcademiaParticipants

Weconducted15interviewsofacademicsdrawn

fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-

neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate

orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin

AppendixB.Ourinterviewswereconductedwith

thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.

FindingsfromIndustryInterviews

Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects

fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness

leadershipoftheorganizationmisunderstanding

howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.

Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand

utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.

Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-

turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject

TABLE1

IndustryCandidateResponseRates

Candidate

Indicators

Pool

Accepted

Declined

Numberofcandidates

379

50

14

Percentage

100

13.2

3.7

TABLE2

AcademicCandidateResponseRates

Candidate

Indicators

Pool

Accepted

Declined

Numberofcandidates

37

15

22

Percentage

100

40.5

59.5

failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.

Leadership-DrivenFailures

Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason

thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.

OptimizingfortheWrongBusinessProblem

First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This

resultsinthedatascienceteamworkinghardfor

monthstodeliveratrainedAImodelthatmakes

littleimpactonthebusinessororganization.In

manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.

Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan

6

beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade

bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but

whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat

sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome

obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.

UsingArtificialIntelligencetoSolveSimpleProblems

Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough

torequireanMLsolution:Asoneinterviewee

explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-

wordanddonotrealizethatsimplerandcheaper

solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident

thattheirbusinessareamusthavecomplexproblems

Manyleadersarenot

preparedforthetime

andcostofacquiring,cleaning,andexploringtheirorganization’sdata.

thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.

OverconfidenceinArtificialIntelligence

Additionally,manyseniorleadershaveinflated

expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-

mentsofAImodelshavegeneratedawaveofhype

aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse

casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many

businessleadersalsodonotrealizethatAIalgo-

rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.

UnderestimatingtheTimeCommitmentNeeded

Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount

oftimethatitwouldtaketotrainanAImodelthat

waseffectiveatsolvingtheirbusinessproblems.

Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They

expectAIprojectstotakeweeksinsteadofmonths

tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in

someorganizations,seniorleadersrapidlyswitch

theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal

7

results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,

“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27

Bottom-Up–DrivenFailures

Incontrasttothetop-downfailurepatternsdriven

bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure

patterndrivenbythedatascientistsontheteam.

Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto

tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild

uptheirexperienceusingthelatesttechnological

advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir

skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.

Data-DrivenFailures

Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.

Manyinterviewees(30of50)discussedpersistent

issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe

algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28

TooFewDataEngineers

Thelackofprestigeassociatedwithdataengineer-

ingactsasanadditionalbarrier:Oneinterviewee

referredtodataengineersas“theplumbersofdata

science.”29Dataengineersdothehardworkof

designingandmaintainingtheinfrastructurethat

ingests,cleans,andtransformsdataintoaformat

suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata

engineeringislookeddownonasamenialtask.30

Thegoalformanydataengineersistogrowtheir

skillsandtransitionintotheroleofdatascientist;

consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,

theseindividualstakealloftheirknowledgeabout

theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat

nooneknowswhichdatasetsarereliableorhowthe

meaningofadatasetmighthaveshiftedovertime.

PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill

loseinterestandabandonit.

LackofSuitableData

Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften

wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor

loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened

asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat

linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone

8

orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论