版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ResearchReport
JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY
TheRootCausesofFailure
forArtificialIntelligence
ProjectsandHowThey
CanSucceed
AvoidingtheAnti-PatternsofAI
rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea
transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-
nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes
A
oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5
AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting
enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.
However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto
deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat
theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14
SUMMARY
2
Background
Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI
projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat
only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.
Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-
ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate
risksintheirplanning.
Approach
ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.
Takeaways
OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain
aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe
likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.
IndustryRecommendations
Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:
•Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand
miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.
•Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat
leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.
•Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.
3
•Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel
deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.
•UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.
AcademiaRecommendations
Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:
•Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween
academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.
•Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,
suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.
aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or
reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.
bCiscoAIReadinessIndex.
cKahn,“WantYourCompany’sAIProjecttoSucceed?”
Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow
toexecuteAIprojectsintheirorganizationavoid
someofthemostcommonreasonsforAIproject
failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From
theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes
andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.
AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-
ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork
togethertosolvepressingbusinessproblems.16
IT-typeprojectscanfailformanyreasonsnot
relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,
whichresultsinincreasedcostsforthesponsoring
enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18
Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.
4
Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences
withAI.20Forexample,McKinseyhasconducted
anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22
Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-
vidualsbuildingAIapplicationsasopposedtothe
businessleadersoftheorganization.Abottom-up
approachallowsustodiscusswhyAIprojectsfail
fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting
interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice
surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured
interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.
Methods
Togatherdataforthisreport,weconductedsemi-
structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese
interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-
nization.Weincludedbothtechnicalfailuresand
businessfailureswithinthisdefinition.Eachinter-
vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful
andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses
basedontheinterviewresponses.Theinterviews
wereconductedbetweenAugustandDecember2023.
Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-
endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese
professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees
werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed
towardidentifyingleadershipfailures.
IndustryParticipants
WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail
messages.Potentialparticipantshadatleastfive
yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual
contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected
participantstorepresentavarietyofexperiences
andbackgrounds.Inparticular,weselectedpar-
ticipantsfromdifferentcompanysizes(start-ups,
largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.
Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals
ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.
Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.
5
AcademiaParticipants
Weconducted15interviewsofacademicsdrawn
fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-
neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate
orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin
AppendixB.Ourinterviewswereconductedwith
thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.
FindingsfromIndustryInterviews
Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects
fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness
leadershipoftheorganizationmisunderstanding
howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.
Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand
utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.
Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-
turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject
TABLE1
IndustryCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
379
50
14
Percentage
100
13.2
3.7
TABLE2
AcademicCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
37
15
22
Percentage
100
40.5
59.5
failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.
Leadership-DrivenFailures
Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason
thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.
OptimizingfortheWrongBusinessProblem
First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This
resultsinthedatascienceteamworkinghardfor
monthstodeliveratrainedAImodelthatmakes
littleimpactonthebusinessororganization.In
manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.
Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan
6
beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade
bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but
whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat
sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome
obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.
UsingArtificialIntelligencetoSolveSimpleProblems
Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough
torequireanMLsolution:Asoneinterviewee
explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-
wordanddonotrealizethatsimplerandcheaper
solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident
thattheirbusinessareamusthavecomplexproblems
Manyleadersarenot
preparedforthetime
andcostofacquiring,cleaning,andexploringtheirorganization’sdata.
thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.
OverconfidenceinArtificialIntelligence
Additionally,manyseniorleadershaveinflated
expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-
mentsofAImodelshavegeneratedawaveofhype
aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse
casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many
businessleadersalsodonotrealizethatAIalgo-
rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.
UnderestimatingtheTimeCommitmentNeeded
Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount
oftimethatitwouldtaketotrainanAImodelthat
waseffectiveatsolvingtheirbusinessproblems.
Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They
expectAIprojectstotakeweeksinsteadofmonths
tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in
someorganizations,seniorleadersrapidlyswitch
theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal
7
results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,
“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27
Bottom-Up–DrivenFailures
Incontrasttothetop-downfailurepatternsdriven
bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure
patterndrivenbythedatascientistsontheteam.
Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto
tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild
uptheirexperienceusingthelatesttechnological
advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir
skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.
Data-DrivenFailures
Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.
Manyinterviewees(30of50)discussedpersistent
issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe
algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28
TooFewDataEngineers
Thelackofprestigeassociatedwithdataengineer-
ingactsasanadditionalbarrier:Oneinterviewee
referredtodataengineersas“theplumbersofdata
science.”29Dataengineersdothehardworkof
designingandmaintainingtheinfrastructurethat
ingests,cleans,andtransformsdataintoaformat
suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata
engineeringislookeddownonasamenialtask.30
Thegoalformanydataengineersistogrowtheir
skillsandtransitionintotheroleofdatascientist;
consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,
theseindividualstakealloftheirknowledgeabout
theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat
nooneknowswhichdatasetsarereliableorhowthe
meaningofadatasetmighthaveshiftedovertime.
PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill
loseinterestandabandonit.
LackofSuitableData
Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften
wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor
loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened
asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat
linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone
8
orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延安大学《中国古代文学(二)》2021-2022学年第一学期期末试卷
- 烟台理工学院《商务韩语应用三》2022-2023学年第一学期期末试卷
- 酒店房间租赁合同三篇
- 五年级数学(小数四则混合运算)计算题专项练习及答案汇编
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 战略思维在主管工作中的应用计划
- 文化对生产计划的影响
- 策划班级知识分享会计划
- 制定财务科技应用的学习策略计划
- 财务资产复核计划
- Y -S-T 273.11-2023 冰晶石化学分析方法和物理性能测定方法 第11部分:元素含量的测定 X射线荧光光谱法 (正式版)
- 《Java》课程设计记事本
- 全球数字广告市场前景及投资研究报告-培训课件外文版2024.4
- 肠内营养返流误吸的预防与护理
- 青川乔庄镇大沟村桃园组新建便民桥项目对大熊猫国家公园生态影响评价专题报告
- 药理学(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
- 《肉制品创业指导课程》课件-白切鸡
- 工程项目部安全生产治本攻坚三年行动实施方案
- 实验小学集团化办学经验介绍省公开课一等奖全国示范课微课金奖课件
- 农机安全执法课件
- 国际货物运输委托代理合同(中英文对照)全套
评论
0/150
提交评论