版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05新定义与阅读理解题型一新定义1.(2023·重庆·统考中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是A.0 B.1 C.2 D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:,故说法①正确.若使其运算结果与原多项式之和为0,必须出现,显然无论怎么添加绝对值,都无法使的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是;;;.当添加两个绝对值时,共有3种情况,分别是;;.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.2.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足,我们将这样的点定义为“倍值点”.若关于的二次函数(为常数,)总有两个不同的倍值点,则的取值范围是(
)A. B. C. D.【答案】D【分析】利用“倍值点”的定义得到方程,则方程的,可得,利用对于任意的实数总成立,可得不等式的判别式小于0,解不等式可得出的取值范围.【详解】解:由“倍值点”的定义可得:,整理得,∵关于的二次函数(为常数,)总有两个不同的倍值点,∴∵对于任意实数总成立,∴整理得,∴∴,∴,或当时,解得,当时,此不等式组无解,∴,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.3.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是(
)A. B. C. D.【答案】D【分析】由题意可得:三倍点所在的直线为,根据二次函数的图象上至少存在一个“三倍点”转化为和至少有一个交点,求,再根据和时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为,在的范围内,二次函数的图象上至少存在一个“三倍点”,即在的范围内,和至少有一个交点,令,整理得:,则,解得,,∴,∴或当时,,即,解得,当时,,即,解得,综上,c的取值范围是,故选:D.【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.4.(2023·重庆·统考中考真题)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵,,∴7311是“天真数”;四位数8421,∵,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记,,若能被10整除,则满足条件的M的最大值为________.【答案】6200;9313【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到,进而,若M最大,只需千位数字a取最大,即,再根据能被10整除求得,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,,,,,则,∴,∴,若M最大,只需千位数字a取最大,即,∴,∵能被10整除,∴,∴满足条件的M的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.5.(2023·四川乐山·统考中考真题)定义:若x,y满足且(t为常数),则称点为“和谐点”.(1)若是“和谐点”,则__________.(2)若双曲线存在“和谐点”,则k的取值范围为__________.【答案】;【分析】(1)根据“和谐点”的定义得到,整理得到,解得(不合题意,舍去),即可得到答案;(2)设点为双曲线上的“和谐点”,根据“和谐点”的定义整理得到,由得到,则,由进一步得到,且,根据二次函数的图象和性质即可得到k的取值范围.【详解】解:(1)若是“和谐点”,则,则,∴,即,解得(不合题意,舍去),∴,故答案为:(2)设点为双曲线上的“和谐点”,∴,,即,∴,则,∵,∴,即,∵,∴,且,对抛物线来说,∵,∴开口向下,当时,,当时,,∵对称轴为,,∴当时,k取最大值为4,∴k的取值范围为,故答案为:【点睛】此题考查了反比例函数的性质、二次函数的图象和性质等知识,读懂题意,熟练掌握反比例函数和二次函数的性质是解题的关键.6.(2023·浙江绍兴·统考中考真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________.
【答案】或【分析】根据题意求得点,,,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由,当时,,∴,∵,四边形是矩形,∴,①当抛物线经过时,将点,代入,∴解得:②当抛物线经过点时,将点,代入,∴解得:综上所述,或,故答案为:或.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.7.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.
(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B作交的延长线于点E.若,求四边形的周长.【答案】(1)证明见解析(2)画图见解析(3)【分析】(1)先证明,,再证明,即可得到结论;(2)根据新定义分两种情况进行讨论即可;①,结合图形再确定满足或的格点D;②,结合图形再确定满足的格点D;(3)如图,过作于,可得四边形是矩形,,,证明四边形为平行四边形,可得,,设,而,,,由新定义可得,由勾股定理可得:,再解方程可得答案.【详解】(1)解:∵,∴,,∵对角线平分,∴,∴,∴,∴四边形为邻等四边形.(2)解:,,即为所求;(3)如图,过作于,
∵,∴四边形是矩形,∴,,∵,∴四边形为平行四边形,∴,,设,而,∴,,由新定义可得,由勾股定理可得:,整理得:,解得:,(不符合题意舍去),∴,∴四边形的周长为.【点睛】本题考查的是新定义的含义,平行线的性质,等腰三角形的判定,平行四边形的判定与性质,矩形的判定与性质,勾股定理的应用,一元二次方程的解法,理解题意,作出合适的辅助线是解本题的关键.8.(2023·湖北荆州·统考中考真题)如图1,点是线段上与点,点不重合的任意一点,在的同侧分别以,,为顶点作,其中与的一边分别是射线和射线,的两边不在直线上,我们规定这三个角互为等联角,点为等联点,线段为等联线.(1)如图2,在个方格的纸上,小正方形的顶点为格点、边长均为1,为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段为等联线、某格点为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在中,,,延长至点,使,作的等联角和.将沿折叠,使点落在点处,得到,再延长交的延长线于,连接并延长交的延长线于,连接.①确定的形状,并说明理由;②若,,求等联线和线段的长(用含的式子表示).【答案】(1)见解析(2)①等腰直角三角形,见解析;②;【分析】(1)根据新定义,画出等联角;(2)①是等腰直角三角形,过点作交的延长线于.由折叠得,,,证明四边形为正方形,进而证明,得出即可求解;②过点作于,交的延长线于,则.证明,得出,在中,,,进而证明四边形为正方形,则,由,得出,根据相似三角形的性质得出,根据即可求解.【详解】(1)解:如图所示(方法不唯一)(2)①是等腰直角三角形.理由为:如图,过点作交的延长线于.由折叠得,,,,四边形为正方形又,,而,是等腰直角三角形.②过点作于,交的延长线于,则.,,由是等腰直角三角形知:,,,,而,,在中,,,,,,由,,∴四边形为正方形,,由,得:,∴,,而,即,解得:,由①知:,,.【点睛】本题考查了几何新定义,正方形的性质与判定,折叠问题,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,理解新定义,掌握正方形的性质是解题的关键.9.(2023·内蒙古赤峰·统考中考真题)定义:在平面直角坐标系中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.
(1)如图①,矩形的顶点坐标分别是,,,,在点,,中,是矩形“梦之点”的是___________;(2)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是___________,直线的解析式是___________.当时,x的取值范围是___________.(3)如图②,已知点A,B是抛物线上的“梦之点”,点C是抛物线的顶点,连接,,,判断的形状,并说明理由.【答案】(1),(2),,或(3)是直角三角形,理由见解析【分析】(1)根据“梦之点”的定义判断这几个点是否在矩形内部或边上即可;(2)把代入求出解析式,再求与的交点即为,最后根据函数图象判断当时,x的取值范围;(3)根据“梦之点”的定义求出点A,B的坐标,再求出顶点C的坐标,最后求出,,,即可判断的形状.【详解】(1)∵矩形的顶点坐标分别是,,,,∴矩形“梦之点”满足,,∴点,是矩形“梦之点”,点不是矩形“梦之点”,故答案为:,;(2)∵点是反比例函数图象上的一个“梦之点”,∴把代入得,∴,∵“梦之点”的横坐标和纵坐标相等,∴“梦之点”都在直线上,联立,解得或,∴,∴直线的解析式是,函数图象如图:
由图可得,当时,x的取值范围是或;故答案为:,,或;(3)是直角三角形,理由如下:∵点A,B是抛物线上的“梦之点”,∴联立,解得或,∴,,∵∴顶点,∴,,,∴,∴是直角三角形.【点睛】本题是函数的综合题,考查了一次函数、反比例函数、二次函数,理解坐标与图形性质,记住两点间的距离公式,正确理解新定义是解决此题的关键.10.(2023·甘肃兰州·统考中考真题)在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.
(1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;(2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;(3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.【答案】(1)(2)(3)【分析】(1)过点作于点,根据新定义得出,根据已知得出,则,即可求解;(2)当到轴的距离最小时,点在线段上,设的边长为,以为圆心为半径作圆,当与轴相切时,如图所示,切点为,此时点是直线:轴的伴随点.且点到轴的距离最小,则的纵坐标为,即,是等边三角形,且轴,设交于点,则,得出,根据即可求解;(3)当四边形是正方形时,,连接并延长交轴于点,直线的解析式为,得出,可得到直线的距离为,则当点与点重合时,当点与点重合时,求得两个临界点时的的值,即可求解.【详解】(1)解:如图所示,过点作于点,
∵,,则,点是直线的“伴随点”时,∴,∵,,∴,∵,∴,∴,∴;(2)解:当到轴的距离最小时,∴点在线段上,设的边长为,以为圆心为半径作圆,当与轴相切时,如图所示,切点为,此时点是直线:轴的伴随点.且点到轴的距离最小,
则的纵坐标为,即,∵是等边三角形,且轴,设交于点,则,∴,∴,∵,∴,解得:或(舍去)∴等边三角形的边长为(3)解:如图所示,当四边形是正方形时,,连接并延长交轴于点,
∵,,∴,,∵,设直线的解析式为,则解得∴直线的解析式为,∴直线垂直,当时,∴,∵,即得到直线的距离为,则当点与点重合时,是直线:的伴随点.此时在上,则,解得:,当点与点重合时,则过点,此时,解得:,∴.【点睛】本题考查了几何新定义,解直角三角形,切线的性质,直线与坐标轴交点问题,正方形的性质,理解新定义是解题的关键.题型二阅读理解11.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有___________盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.12.(2023·北京·统考中考真题)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B,C,D,E,F,G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序ABCDEFG所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.【答案】53;28【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A,乙学生同时做工序B;然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G;最后甲学生做工序E,乙学生同时做工序F,然后可得答案.【详解】解:由题意得:(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,且工序A,B都需要9分钟完成,∴甲学生做工序A,乙学生同时做工序B,需要9分钟,然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G,需要9分钟,最后甲学生做工序E,乙学生同时做工序F,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要(分钟),故答案为:53,28;【点睛】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.13.(2023·内蒙古通辽·统考中考真题)阅读材料:材料1:关于x的一元二次方程的两个实数根和系数a,b,c有如下关系:,.材料2:已知一元二次方程的两个实数根分别为m,n,求的值.解:∵m,n是一元二次方程的两个实数根,∴.则.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程的两个实数根为,则___________,___________;(2)类比:已知一元二次方程的两个实数根为m,n,求的值;(3)提升:已知实数s,t满足且,求的值.【答案】(1),(2)(3)的值为或【分析】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出,,再根据,最后代入求值即可;(3)由题意可将s、t可以看作方程的两个根,即得出,,从而由,求得或,最后分类讨论分别代入求值即可.【详解】(1)解:∵一元二次方程的两个根为,,∴,.故答案为:,;(2)解:∵一元二次方程的两根分别为m、n,∴,,∴;(3)解:∵实数s、t满足,∴s、t可以看作方程的两个根,∴,,∵,∴或,当时,,当时,,综上分析可知,的值为或.【点睛】本题考查一元二次方程根与系数的关系,完全平方公式的变形计算,分式的混合运算.理解题意,掌握一元二次方程根与系数的关系:和是解题关键.14.(2023·山西·统考中考真题)阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.
我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.
①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:证明:如图2,连接,分别交于点,过点作于点,交于点.∵分别为的中点,∴.(依据1)
∴.∵,∴.∵四边形是瓦里尼翁平行四边形,∴,即.∵,即,∴四边形是平行四边形.(依据2)∴.∵,∴.同理,…任务:(1)填空:材料中的依据1是指:_____________.依据2是指:_____________.(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)(3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.
【答案】(1)三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半);平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)(2)答案不唯一,见解析(3)平行四边形的周长等于对角线与长度的和,见解析【分析】(1)根据三角形中位线定理和平行四边形的定义解答即可;(2)作对角线互相垂直的四边形,再顺次连接这个四边形各边中点即可;(3)根据三角形中位线定理得瓦里尼翁平行四边形一组对边和等于四边形的一条对角线,即可得妯结论.【详解】(1)解:三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半)平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)(2)解:答案不唯一,只要是对角线互相垂直的四边形,它的瓦里尼翁平行四边形即为矩形均可.例如:如图即为所求
(3)瓦里尼翁平行四边形的周长等于四边形的两条对角线与长度的和,证明如下:∵点分别是边的中点,∴.∴.同理.∴四边形的周长.即瓦里尼翁平行四边形的周长等于对角线与长度的和.【点睛】本题考查平行四边形的判定,矩形的判定,三角形中位线.熟练掌握三角形中位线定理是解题的关键.15.(2023·湖南张家界·统考中考真题)阅读下面材料:将边长分别为a,,,的正方形面积分别记为,,,.则例如:当,时,根据以上材料解答下列问题:(1)当,时,______,______;(2)当,时,把边长为的正方形面积记作,其中n是正整数,从(1)中的计算结果,你能猜出等于多少吗?并证明你的猜想;(3)当,时,令,,,…,,且,求T的值.【答案】(1),(2)猜想结论:,证明见解析(3)【分析】(1)根据题意,直接代入然后利用完全平方公式展开合并求解即可;(2)根据题意得出猜想,然后由完全平方公式展开证明即可;(3)结合题意利用(2)中结论求解即可.【详解】(1)解:当,时,原式;当,时,原式;(2)猜想结论:证明:;(3).【点睛】题目主要考查利用完全平方公式进行计算,理解题意,得出相应规律是解题关键.16.(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形是矩形,是等腰直角三角形,记为、为,若,则.
证明:设,∵,∴,易证∴,∴∴,若时,当,则.同理:若时,当,则.根据上述材料,完成下列问题:如图2,直线与反比例函数的图象交于点,与轴交于点.将直线绕点顺时针旋转后的直线与轴交于点,过点作轴于点,过点作轴于点,已知.
(1)求反比例函数的解析式;(2)直接写出的值;(3)求直线的解析式.【答案】(1)(2),(3)【分析】(1)首先求出点,然后设,在中,利用勾股定理求出,得到,然后代入求解即可;(2)首先根据,得到,,求出,,然后利用正切值的概念求出,然后证明出四边形是矩形,得到,然后由即可求出;(3)首先根据矩形的性质得到,,然后利用求出,进而得到,然后设直线的解析式为,利用待定系数法将和代入求解即可.【详解】(1)将代入得,,∴,∵直线与反比例函数的图象交于点,∴设,∵,,∴在中,,∴,∴解得,,∵点A的横坐标要大于点B的横坐标,∴应舍去,∴,∴,∴将代入,解得;∴反比例函数的解析式为;(2)∵,,∴,,∴,,∵,∴,∵,,∴四边形是矩形,∴,∵将直线绕点顺时针旋转后的直线与轴交于点,∴,∴,∵,∴;(3)∵四边形是矩形,∴,,∵,,∴,即,∴解得,∴,∴,∴设直线的解析式为,∴将和代入得,,∴解得,∴直线的解析式为.【点睛】此题考查了反比例函数,一次函数和几何综合题,矩形的性质,解直角三角形,勾股定理等知识,解题的关键是正确理解材料的内容.17.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高二化学选择性必修2(人教版)同步课件 第二章 第一节 第1课时 共价键
- 【+初中语文+】课外古诗词诵读《+送元二使安西+》课件+统编版语文六年级(五四学制)上册
- 广东省佛山市南海区九江镇儒林实验学校2024-2025学年七年级上学期12月学程调查历史试题(无答案)
- 新浪微博营销案例大全(不可不看)
- 医学教材 产科常见并发症学习资料
- 海尔终端SBU系列培训-顾客满意与顾客抱怨正确应对的方法
- 3.4 用电路实现加法运算
- 国有企业2024年度意识形态工作总结
- 浙江省宁波市九校2023-2024学年高三上学期语文期末联考试卷1
- 年度合格供方名单
- 肺癌患者的护理疑难病历讨论最全课件
- 天然气长输管道安全事故应急演练脚本
- 电机端盖的机械加工工艺工装设计毕业论文
- 胃癌病人的护理ppt
- 订单评审记录表
- 检验科室内质控失控分析报告记录单
- 《凤凰大视野》经典人文纪录片合集
- Q∕SY 201.2-2015 油气管道监控与数据采集系统通用技术规范 第2部分:系统安全
- 任意波形发生器设计
- 大医知识库使用说明
- 混凝土和易性PPT演示课件(PPT 32页)
评论
0/150
提交评论