版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
August2024
ExpertInsights
PERSPECTIVEONATIMELYPOLICYISSUE
NICOLASM.ROBLES,ELIEALHAJJAR,JESSEGENESON,ALVINMOON,CHRISTOPHERSCOTTADAMS,KRISTINJ.LEUSCHNER,JOSHUASTEIER
UsingArtificialIntelligenceand
QuantumComputingtoEnhance
U.S.DepartmentofHomeland
SecurityMissionCapabilities
T
heU.S.DepartmentofHomelandSecurity(DHS)isthethird-largestcabinetdepartmentinthefederalgovernment,bringingtogethermultiplecompo-
nents,includingtheFederalEmergencyManagementAgency(FEMA),the
CounteringWeaponsofMassDestruction(WMD)Office,theU.S.CoastGuard(USCG),andtheU.S.SecretService(USSS),amongothers.Thesecomponentsarechargedwithcarryingoutadiversearrayofmissions:protectingtheUnitedStatesagainstterrorism,securingU.S.borders,securingcyberspaceandcriticalinfrastruc-ture,preservingU.S.economicsecurity,andstrengtheningdisasterpreparednessandresilience.1Tosuccessfullyachievethesemissions,DHSmustleveragetechnolo-giestothefullestextentpossible.
DHSemployswell-testedtechnologiestomanagethecomplexityandresourcethecostsofitsmissions.However,twopowerfulemergingtechnologies—artificial
2
Abbreviations
AIartificialintelligence
CBPU.S.CustomsandBorderProtection
CISACybersecurityandInfrastructureSecurity
Agency
DHSU.S.DepartmentofHomelandSecurity
FEMAFederalEmergencyManagementAgency
GPTgenerativepretrainedtransformer
GREGraduateRecordExamination
LLMlargelanguagemodel
MLmachinelearningNNneuralnetwork
PDEpartialdifferentialequation
PQCpostquantumcryptography
QCquantumcomputing
QKDquantumkeydistribution
QMquantummechanics
QMLquantummachinelearning
QSquantumsensing
QSVMquantumsupport-vectormachine
SVMsupport-vectormachine
TSATransportationSecurityAdministration
UAVuncrewedaerialvehicle
USCGU.S.CoastGuard
USSSU.S.SecretService
WMDweaponsofmassdestruction
intelligence(AI)andquantumcomputing(QC)—mighthavethepotentialtosignificantlyexpandthecapabilitiesavailabletoDHSinthefuture.AI—inparticular,itssubfieldofmachinelearning(ML)—isanumbrellaconceptofusingcomputerstorapidlysolveproblemsforwhichthedevelop-mentofalgorithmsbyhumanprogrammerswouldbecost-prohibitiveorotherwiseextremelydifficult(Murphy,2012).
QCattemptstoleveragetheprinciplesofquantummechan-ics(QM)toobtainquantifiableadvantagesovertraditionalcomputing,bothintermsofspeedandintheabilitytosolveverycomplexproblems.Unlikepreviousleapsintheprog-ressoradvancementofscience,suchasthenuclearprogramorthespaceprogram,whichwerestatesponsored,QCis,forthemostpart,incentivizedandpioneeredbyprivateandfor-profitcompaniesandbyacademicinstitutions(Parker,2021;Parkeretal.,2022).AIismorematurethanQCasadomain,andresearchinAIisdistributedwidelythroughacademiaandindustry.
Althoughthefullpotentialofthesetechnologiesisfarfrombeingrealized,DHScanpositionitscomponentstotakeadvantageoffutureadvancementsbyconsideringhowmatureQC-andAI-basedtechnologiesmightbeusedtoaffectDHSmissionoutcomes.Inthispaper,wearguethat
QCandAItools—iftheirpotentialisrealized—couldsupportDHSmissions,makingDHSmoreeffectiveandefficientandimprovingthelivesofDHSstaffandotherstakeholders.
Ourpredictionsarecontingentonwhethersuccess-fulquantumMLalgorithmscanbediscovered(i.e.,shownmathematicallyorempiricallytobeadvantageousovertheirclassicalcounterparts)andonwhethertheycanrunsmoothlyonpracticalquantumdevices.2Bothissuesarethesubjectofveryintensecutting-edgeresearch.
Inthispaper,webrieflyexplaintheconceptsofQCandAIandthendiscusspotentialapplicationstoDHS’smis-sions.WeconcludethepaperwithrecommendationsonhowDHScouldbestpositionitselftoleverageQCandpre-pareitsworkforce.
3
QuantumComputingandArtificialIntelligence
Astwofieldsofscienceandtechnology,bothAIandQChavegainedextremepopularityinadditiontotheiraccep-tanceinthescientificcommunity.AIhasprovedtobeavaluabletoolinmodernscienceandcomputing.QC,whichitselfisasubfieldofthewiderquantuminformationsciencediscipline,isatanearlierstageofdevelopmentthanAIisbutisstrivingtocatchupwithitsAIcousin.Inthepastdecadeorso,therehavebeenmanyattemptsatmergingthepromisedadvantagesofQCintothefieldofAI,although,todate,theseattemptshavemetwithmixedsuccess(SchuldandPetruccione,2018;seealsoBiamonteetal.,2017).
QuantumComputing
QCattemptstoleveragequantummechanicalphenomena,suchassuperposition,entanglement,andinterference,toobtainquantifiableadvantagesovertraditional,orclassi-cal,computing.QM—thetheoreticalbasisofQC—isoneofthemostsuccessfultheoriesof20th-centuryphysics,withexperimentaltestsverifyingitsvaliditytoincrediblepreci-sion(GriffithsandSchroeter,2018;Sakurai,1994).QMisafundamentaltheoryofnaturethatdescribesthesubatomicworldinwhichclassical(i.e.,Newtonian)physicsfails.Forinstance,inQC,thefamiliarnotionofaninformationbitbeingexclusivelyoff(0)oron(1)nolongerholds.Aquan-tumbit,knownasaqubit,existsinasuperpositionofoffandonsimultaneously—onlyuponmeasurementofaqubitisitforcedtotakeadefinite0or1valuewithspecificprob-abilities,therebycollapsingintoabit.
Thissuperpositionallowsforquantumparallelism,whichistheabilityofquantumcomputerstoevaluateafunctionformultipleinputvaluessimultaneously.Thekeytomanyprovenspeedupsinquantumalgorithmsispre-ciselythisparallelism(DeutschandJozsa,1992;NielsenandChuang,2010).Indeed,thisisagamechangerbecausethesolutionstoverycomplexproblemscannowbeencodedinaregistryofqubits,andresearcherscanextractthedesiredsolutionorpropertiesfromthesequbitsinacontrolledway.
Toproceedwiththisextraction,researchersmustturntheirattentiontootheruniquenotionsthatdonothaveclas-sicalcounterparts,suchasentanglementandinterference.3OneoutstandingexampleofsuchaspeedupandextractionprocedureisShor’salgorithmforprimefactorization,whichfindsprimefactorsofanintegerwithasuperpolynomialspeedup—animprovementoverthebest-knownclassicalalgorithms.4Thishasveryseriousimplicationsincryptog-raphy;asaconsequence,theNationalInstituteofStandardsandTechnologyisstudyinganewarrayofpostquantumcryptography(PQC)algorithmsthatdonotdependoninte-gerfactorization.5
However,theadvantagesofQCoverclassicalcomput-ingarenotstraightforward.Incertainsituations,ratherthansupplyingasuperpolynomialspeedup,QCprovidesamoremodestquadraticspeedup.Awell-studiedsearchalgorithmknownasGrover’salgorithmissuchaninstance.ManyofthequantumalgorithmsthatwediscussinthispaperfallintothequadraticspeedupcategorybecausetheyarederivativesofGrover’salgorithm.Effectively,thismeansthat,ifaclassicalalgorithmrequiresNiterationstoproducearesultwithacertainaccuracy,aquantumalgorithmcould
producethissameresultinonlyO(√)iterations,thereby
providingaquadraticspeedupinruntime.6
4
Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunitsandwhichtasksshouldbeoutsourcedtoquantumprocessingunits.
Asaresult,quantumcomputersarenotall-purposecomputersthatwillsomedayreplaceordinarycomputers.Quantumcomputerswilllikelybeemployedprimarilyinthemost-taxingoperationsandthosemostpronetocre-atingbottlenecks(e.g.,Kothari,2020).Indeed,onecouldthinkofquantumdevicesasbeingpowerfulenginesinalargechainofprocesses.Therefore,orchestrationacrosscomputingapproacheswillbekey.Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunits(includinghigh-performancecomputersandgraphics-processingunits)andwhichtasksshouldbeoutsourcedtoquantumprocessingunits.Evenoncequantumcomputerswork,therewillprobablybeabreakevenpointatwhichthequan-tumcomputerisworthwhileonlyfortasksthatarebiggerthansomethreshold.
HardwarealsoplacesconstraintsonQC.Severaltech-nologiesandengineeringparadigmsexisttoproducework-ingqubits:superconductors,iontraps,photonics,annealers,neutral-atomtraps,silicon-spinqubits,and(morespecu-latively)topologicalqubitsandnitrogen-vacancycenters.Thesetechnologies(exceptforannealers)sharethesamearchitecture,whichisknownasuniversalgate-basedcom-
puting.Currentdevicesfromprivate-sectorcompanies,federallyfundedresearchanddevelopmentcenters,anduniversitiesproduceverynoisyqubits,soqubitoperationsworksuboptimallyandslowly.Thismeansthat,evenifanalgorithmproducesatheoreticaladvantage,realizingthisadvantagepracticallyisstilldifficultbecausethedevicesarenotyetrobustenough.Certaintechniques,suchaserrormitigationanderrorcorrection,canhelpundothenoisetowhichqubitsarepronebytheirquantumnature.However,thesetechniquesarenotfullydeployableyetandsometimesadduptotheglobaloverheadofthealgorithm,therebyreducingitseffectivenessinsomecases(see,e.g.,GoogleQuantumAI,2023;Mandelbaum,Steffen,andCross,2023;Stamatopoulosetal.,2020;andWoernerandEgger,2019)forcertaintheoreticaloverheadsnotrelatedtoerrorcorrection.Devicesthatareimperfectareknownasnoisy,intermediate-scalequantumcomputers.Annealers,ontheotherhand,haveadifferentarchitecturealtogetherthatisnotgatebasedanddoesnotperformuniversalcalculations,butitexcelsatdiscreteoptimizationandoperationsresearchproblems.7
5
Insum,wenotethefollowingaboutthecurrentstatusofQC:
•TheonlyknownQCalgorithmforAIandMLisGrover’salgorithm.
•ThetheoreticalspeedupofGrover’salgorithmismodestandmightwellbewashedoutbyallneces-saryhardwareoverhead.
•OtherQCalgorithmsforAIandMLmightariseinthefuture,butwhethertheywillisstillunknown.
QuantumComputingandMachineLearning
ThesuccessesofAIarewelldocumented,andAIhasbecomeanindispensabletoolinmoderncomputing,whetherforcommercial,military,orsecurityapplications,asillustratedinKrelina(2021)andQuantumWorkingGroup(2021).ItthusbecomesnaturaltoaskwhetherQCcanfurtherboostMLbyprovidingadvantagesoverclassicalcomput-ing.GiventhesuccessofQMinphysicsontheonehandandthesuccessofMLincomputingontheotherhand,theexpectationsofquantumML(QML)are,ingeneral,dis-proportionatelyhuge(SchuldandPetruccione,2018).ButalthoughthecommercialandbusinessimplicationsofQMLarenowbeingexploredandaddressed,theresultshavenotyetmatchedtheexpectations.
Formany,AImeansMLforbigdata.Thisis,however,oneoftheapplicationsofAIforwhichQCistheleastuseful.AnyapplicationofquantumalgorithmsforthattypeofAIisprobablystillfarinthefuture,giventheneedforhardwareresources(memory,gatespeed,andotherconceptswedis-cussinthispaper)andbecauseitisnotknownyetwhetherQCwouldspeedupthatkindofAIeveninprinciplebecauseofsuchissuesasdata-loading,aswediscusslater.
AssumptionsUnderlyingThisPaper
Astheprecedingdiscussionillustrates,manytechnicalchal-lengeswithAIandQCremaintobesolved.Despitetheseissues,ingeneral,thispaperdoesnotfocusontimelinesorcurrenttechnologyreadinessbecauseAIandQCarestillintheprocessofmaturing.OurviewsonhowquantumtechnologiescouldenhanceAItechniquesarelargelyinde-pendentoftheunderlyingtechnologyusedtoproducethequantumdevicesonwhichtheseQMLalgorithmsaregoingtoberun.Instead,forthispaper,weassumetheexistenceofaworking,orclose-to-working,fault-tolerantquantumcomputer,focusingonwhattheexistenceofsuchatechnol-ogycouldmeanforDHScapabilities.
DHShaspubliclyexpressedinterestinquantumonlyforPQC(DHS,2022).OurviewssuggestthatDHScouldexpandtheseinterestsintootherquantumsubjects,suchasQCandquantumsensing(QS).Informedbyourinvestiga-tions,literaturereview,andprofessionalexperience,weputforwardintheconclusionasetofideasandrecommenda-tionsthatcouldassistDHSinleveragingQCsuccessfullytoprotecttheUnitedStates.
U.S.DepartmentofHomelandSecurityMissions
PerTheDHSStrategicPlan:FiscalYears2020–2024(DHS,2019),thedepartmenthassixprimarygoals:
•Counterterrorismandhomelandsecuritythreats.
•SecureU.S.bordersandapproaches.
•Securecyberspaceandcriticalinfrastructure.
•PreserveandupholdU.S.prosperityandeconomicsecurity.
6
•Strengthenpreparednessandresilience.
•ChampiontheDHSworkforceandstrengthenthedepartment.
Foreachofthesegoals,weprovidesomespecificexam-plesofhowAIorMLcouldaffectDHS’scapabilities.TheconclusionsinthispaperarebasedonourfamiliaritywiththescientificliteratureonQCandAIandonourpreviousandongoingpeer-reviewedscholarship.Whenpossible,wemaketheconnectiontoQMLanddevelopthepotentialbenefitsofprovidingquantumbooststoMLtasks.Notallinstancesoftechnologies’impactwillbepositive,and,inafewinstances,classicaltechniquesaremorethanenoughtoprovidetheneededcapabilitiesorQCsimplyfailstodeliveradvantagesoverclassicalmethods.
Asacaution,weemphasizethatourattemptsatfindinginstancesofprofitableusesofQMLhavenotbeenexhaus-tive,sotherecouldbeotherexamplesorsituationsinwhichquantumadvantagescouldbeimportantforotherDHSactivitiesthatarenotcontemplatedinthispaper.
Beforeproceeding,wementionthebalancethatmustbeachievedtoproduceapaperthatisinformativewithoutbeingexcessivelytechnical.WestrovetodescriberealisticideasandscenariosinwhichAIandQMcouldbemergedtoalleviatethecomputationaltasksthatDHScomponentsmustcompleteaspartofperformingtheirduties.Moreover,thereisnoshortageoftechnicalsourcesinwhichquantumalgorithmsandroutinesarecarefullyelaborated,andwerefertheinterestedreadertoBarnett(2009);Hidary(2019);NielsenandChuang(2010);RieffelandPolak(2014);Scherer(2019);SchuldandPetruccione(2018);SteebandHardy(2018);andWong(2022).However,thesesourcestendtoemphasizethequantitativeaspectsofthesealgorithmsand
largelyignorepotentialapplicationsinindustry,military,andsecurity.
CounterTerrorismandHomelandSecurityThreats
ThefirstDHSmissionistocounterterrorismandhomelandsecuritythreats.Thismissionhasfourobjectives:
•Collect,analyze,andshareactionableintelligence.
•Detectanddisruptthreats.
•Protectdesignatedleadership,events,andsofttargets.
•CounterWMDandemergingthreats.
QCandMLtogethercouldhelpDHSaccomplishthesegoalsinanyofseveralways.
Collect,Analyze,andShareActionableIntelligence
DHSaimstodevelop“timelyandactionableintelligencetoaccuratelyassessandpreventthreatsagainsttheUnitedStates”(DHS,2023).AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHScomponentsreceive.DHS’sintelligenceanddomainawarenessoperations,includingthoseintheOfficeofIntel-ligenceandAnalysis,theUSCG,andtheNationalOpera-tionsCenter,mustidentifythreatsbysiftingthroughtensofthousandsofvesselsoperatinginU.S.waters,thousandsofflightsinU.S.airspace,andthousandsoftipsandalertsfil-teringupfromstateandlocalpartners,almostallofwhichareinnocuousnoise.AlthoughDHSreceivesahugevolumeofinformation,itdoesnotcollectthatinformationopti-
7
AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHS
componentsreceive.
mally,pullinginalotofnoiseinawaythatrisksmissingimportantsignals.
MLapproaches,potentiallyenabledbyQC,couldtrainonthesedataandhelpDHSintelligenceagentsmorequicklyandaccuratelyidentifytheneedleinthehaystackofinformationtheyhandleeveryday.Largelanguagemodels(LLMs)arealreadyadeptatintegrationandanalysisoflargedatasets,asevidencedbytheperformanceofGenerativePretrainedTransformer(GPT)4onnumerousbenchmarkexams.QCcouldhelpoptimizeintelligencecollection,suchasfromUSCGpatrolsorU.S.CustomsandBorderProtec-tion(CBP)searches,tobetterinformintelligenceoperations.Furthermore,likewedowithproblemsinquantumchem-istry,quantumfinance,andgraphtheory,weexpectthatLLMscouldbeusedtodesigntailor-madequantumarchi-tecturesfortheseintelligencecollectionproblemsbyusingpriorknowledgefromtherelevantresearchcommunities.
DetectandDisruptThreats
AnothercomponentoftheDHSmissiontocounterterror-ismandhomelandsecuritythreatsistodetectanddisruptthreats,suchasthroughtheactionsthattheTransporta-tionSecurityAdministration(TSA)takestosecureairportsandairplanes.Asstatedearlier,matureQCshouldbeable
torapidlyoptimizepatrol,search,andscanstrategiesatcheckpoints,atcriticalinfrastructurelocations,andalongthebordersandapproaches.Theseinnovationswouldaidnotonlyinimprovingdatacollectionforfutureintelligencedevelopmentbutalsoindetectinganddisruptinganyactivethreatsinthepresent.
ProtectDesignatedLeadership,Events,andSoftTargets
TheUSSShastheprimaryroleinprotectingleadership,events,andsofttargetsforthedepartmentinmostcases,althoughtheFederalProtectiveServiceandtheOfficeofHomelandSecuritySituationalAwarenessalsoplayrolesintheprotectionoffederalbuildingsandevents,respectively.Akeytaskforeachofthesecomponentsistoconductriskassessments(ofevents,facilities,andpersonnel)tooptimizethelevelofprotectionthateachreceives,givenlimitedpro-tectionresources.
AnexampleofsuchariskassessmentistheSpecialEventAssessmentRatingsystem,whichdetermineswhatfederalprotectiveassistanceisneededforprivateevents.Theseassessmentsarecurrentlyconductedusingamixofdataanalysisandhumanjudgment,buttheadditionofQCandMLcouldintegratemanymoredatafeedsintothe
8
analysis,thusprovidingamorenuancedandoptimizeddistributionoffederalresourcesandpersonnel.ThiswouldallowDHStoprotectmoreevents,facilities,andpersonnelandprovidebetterassistancetothoseitcurrentlyprotects.
Duringprotectionoperations,thereareadditionalopportunitiesfortheapplicationoftheseemergingtechnol-ogies,includingtheclassificationoftargetsofinterest(e.g.,ataprotectedevent).Forinstance,noisy,intermediate-scalequantumdevicescouldbeusedtotrainaquantumcircuitforclassificationtasksusingexponentiallyfewerparam-etersthanaclassicalneuralnetwork(NN)wouldrequireforthesametask,withapparentlyminimalreductioninperformance(Schuldetal.,2020).Anotherexampleisthatfault-tolerantQCdevicescouldbeappliedtospeedupclas-sificationtasksbyutilizingthemanyquantumalgorithmsforlinearalgebraicroutinesthathavebeendevelopedintheliterature(Cao,Romero,andAspuru-Guzik,2018).Thesecouldbeexecutedeithercentrallyatacommandcenterbasedonsensorfeedsor,inthemoredistantfuture,attheedgebythesensorsthemselves.
Toidentifytargetsquicklyenoughthatactioncanbetakentopreventdangertoleadershipandevents,searchalgorithmsmusthavesufficientlylowrunningtimeandbeusableincombinationwithclassificationalgorithms.Thequantummechanicalpropertiesofinformation,includ-ingentanglementandsuperposition,havethepotentialtoquadraticallyreducetherunningtimeofsearchalgorithms.LLMscanbeusedtodesignnovelquantumarchitecturesthataretailoredtovariousproblems,soanLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbeespeciallyusefulinprotectingdesignatedleadership,events,andsofttargets.
CounterWeaponsofMassDestruction
DHSworksto“deter,detect,anddisrupttheuseofweaponsofmassdestruction(WMD)andhealthsecuritydangersasearlyinthethreatpathwayaspossible”(DHS,2019,p.16).ThisincludesemplacingdetectioncapabilitiesatportsofentryandacrosstheUnitedStatesandworkingwithinter-nationalpartnerstosecurepotentiallydangeroussubstancesandprecursors.
ImprovementsindetectioncapabilitiesforWMDusingQCcouldenhanceDHS’sabilitytodisruptWMDpathwaysathomeandabroad.OneapproachtointegratingQCcapa-bilitieswouldinvolvesendingdatafromclassicalsensorstoacentralizedQCcapability.However,thiswouldnecessi-tatethetransformationofdatafromclassicaltoquantumsothatthedatacouldbeusedinaquantumalgorithm.Thistransformation—usuallytermedloadingdataontoaquan-tumdevice—isanexpensiveprocess.Ontheotherhand,ifthedatawerealreadyinquantumform,suchasdatacol-lectedfromaquantumsensor(Krelina,2021;QuantumWorkingGroup,2021),and,ifaquantumalgorithmcouldbedeployedalmostimmediatelyonthisdata,thedata-loadingproblemcouldbebypassed.ThisQSwouldallowCBP,theCounteringWMDOffice,andotherstodetectchemical,biological,radiological,andnuclearthreatsmorequicklyandmoreeffectivelyandtobetterresolvealarmsinthefield.Althoughthismergingconceptisstillexperi-mental,suchacapabilitybeingevenpartiallyrealizedcouldsignificantlyboostthebenefitsofdetectingthesetypesofthreatsatportsofentryorinmetropolitanareas.
AnotheraspectofDHS’scounter-WMDeffortsishorizon-scanningforthreatsfromemergingtechnologies—includingpotentialthreatsresultingfromtheuseofQC,ML,andAI.Forinstance,quantumalgorithmsmightbe
9
AnLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbe
especiallyusefulinprotectingdesignatedleadership,events,andsofttargets.
employedtoacceleratethesynthesisofpoisons,nerveagents,biotechnologies,anddrugsthatareharmfulorillegal.
Theseemergingtechnologiescouldalsohavethepoten-tialtocounterthesamethreatsthattheyunleash.Forinstance,QCandAIcouldbeusedtodesigndrugstocoun-tertheeffectsofWMDandotherthreats.ManyadvancesindrugdesignhavecomefromAI—specifically,deepNNsandsupport-vectormachines(SVMs),whichuselargedatasetswiththousandsofmoleculardescriptors.BecausetheseMLalgorithmsarecomputationallyexpensive,therehasbeenarecentpushtousequantumcomputerstoaccelerateMLfordrugdesign.Forthistowork,thesetofmoleculardescrip-torsmustbecompressedforusewithaquantumcomputer. Recentresearchhasuncoveredamethodforcompress-inguptohundredsofthousandsofmoleculesforusewithSVMsanddata-reuploadingclassifiersonaquantumcom-puter(Batraetal.,2021).KushalBatraandhiscolleaguesconsideredsetsofmoleculardescriptorsrepresentingcoro-navirusdisease2019(COVID-19),plague(Yersiniapestis),andtuberculosis.Otherresearchinthisareahasexploitedthefactthatquantum-gateparameterexplorationoffersanadvantageoverNNparameterexplorationbecausetheprobabilisticnatureofquantumsystemsenablesgeneration
ofmoleculesthatwouldnotbeexploredbyaclassicalgen-erativeadversarialnetwork(Lietal.,2021).ThisideawasusedtodevelopnewQMLtechniquesfordrugdiscovery,includingaquantumgenerativeadversarialnetworkthatlearnspatternsfromthesetofmoleculardescriptorsandgeneratessmalldrugmoleculesandaquantumvariationalautoencoderthatperformsaprobabilisticsearchtogeneratelargedrugmolecules.AlthoughDHSwouldnotnecessarilydirectlyemploythesemethodstogeneratenewdrugsandcures,itcouldbenefitfromthemandcouldpreparetohelpdistributetheminanemergency.
SecureU.S.BordersandApproaches
DHShasacriticalmissiontosecureU.S.bordersandenforcecustomsandimmigrationlaws.Thismissioniscomplex,inlargepartbecauseofthesheersizeoftheinterfacebetweenU.S.bordersandtherestoftheworld.Forinstance,CBPactivelymonitorsthousandsofmilesofterritorialbordersand328portsofentry(CBP,2023),whiletheUSCGpatrols4millionsquaremilesofterritorialwatersandexclusiveeco-
10
AsAIadvancesfurther,theneedforahumanpilotmightberelaxed,anduncrewedsystemscouldactastrue
resourcemultipliersforCBP’slimitedhumancapital.
nomiczones(NationalOceanicandAtmosphericAdminis-tration,undated).
SecureandManageAir,Land,andMaritimeBorders
Giventhescopeofitsmission,CBPhasaworkforcechal-lengealongboththenorthernandsouthernborders:CBPhastoofewagentsconductingtoofewpatrolsacrosstoomuchborderarea.Currentoperationsarepersonnelinten-sive,requiringhumanpatrolsbetweenportsofentryatallhoursofthedayandnight.ThisworkforcerequirementhascompoundedbecauseofCBP’sdifficultyinretainingborderagents(see,e.g.,Gambler,2019)andtheincreasednumberofrefugeefamiliesattemptingtocrosstheborder,whichdivertsCBPresourcesawayfromlawenforcementandtowardmigrantaidandarrest(Morgan,2019).
Tocounteractthisshortage,CBPhasbeguntoemployautonomouscapabilities,andadvancesinQCandAIcouldfurtherempowerthesesystems.Since2012,CBPhasusedlargerMQ-9uncrewedaircrafttoconductchange-detectionsweepsalongthesouthernborder(CBP,2022).Inaddition,CBPhasalsobeguntousesmall,uncrewed
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂大学《Matlab语言与应用》2020-2021学年第一学期期末试卷
- 聊城大学东昌学院《设计基础》2021-2022学年第一学期期末试卷
- 聊城大学《软件质量保证与测试》2022-2023学年第一学期期末试卷
- 八年级政治复习计划
- 工程工作计划锦集
- 会计实习安排计划
- 2024八年级德育工作计划 德育工作计划
- 培训总结及计划
- 新手健身房训练计划
- 幼儿大班工作计划下期幼儿大班工作计划秋季
- 2024年下半年航天科保春季校园招聘正式启航易考易错模拟试题(共500题)试卷后附参考答案
- 2024年江苏省苏州市中考数学试卷含答案
- 软件测试汇报
- 无薪资合同范例
- GB/T 22082-2024预制混凝土衬砌管片
- 充电电缆产品入市调查研究报告
- 5.5 跨学科实践:制作望远镜教学设计八年级物理上册(人教版2024)
- 2024年时事政治题库附参考答案(综合题)
- 隧道及地下工程基础知识单选题100道及答案解析
- 飞行区维护与保障学习通超星期末考试答案章节答案2024年
- 2024年法律职业资格考试(试卷一)客观题试卷及解答参考
评论
0/150
提交评论