版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
August2024
ExpertInsights
PERSPECTIVEONATIMELYPOLICYISSUE
NICOLASM.ROBLES,ELIEALHAJJAR,JESSEGENESON,ALVINMOON,CHRISTOPHERSCOTTADAMS,KRISTINJ.LEUSCHNER,JOSHUASTEIER
UsingArtificialIntelligenceand
QuantumComputingtoEnhance
U.S.DepartmentofHomeland
SecurityMissionCapabilities
T
heU.S.DepartmentofHomelandSecurity(DHS)isthethird-largestcabinetdepartmentinthefederalgovernment,bringingtogethermultiplecompo-
nents,includingtheFederalEmergencyManagementAgency(FEMA),the
CounteringWeaponsofMassDestruction(WMD)Office,theU.S.CoastGuard(USCG),andtheU.S.SecretService(USSS),amongothers.Thesecomponentsarechargedwithcarryingoutadiversearrayofmissions:protectingtheUnitedStatesagainstterrorism,securingU.S.borders,securingcyberspaceandcriticalinfrastruc-ture,preservingU.S.economicsecurity,andstrengtheningdisasterpreparednessandresilience.1Tosuccessfullyachievethesemissions,DHSmustleveragetechnolo-giestothefullestextentpossible.
DHSemployswell-testedtechnologiestomanagethecomplexityandresourcethecostsofitsmissions.However,twopowerfulemergingtechnologies—artificial
2
Abbreviations
AIartificialintelligence
CBPU.S.CustomsandBorderProtection
CISACybersecurityandInfrastructureSecurity
Agency
DHSU.S.DepartmentofHomelandSecurity
FEMAFederalEmergencyManagementAgency
GPTgenerativepretrainedtransformer
GREGraduateRecordExamination
LLMlargelanguagemodel
MLmachinelearningNNneuralnetwork
PDEpartialdifferentialequation
PQCpostquantumcryptography
QCquantumcomputing
QKDquantumkeydistribution
QMquantummechanics
QMLquantummachinelearning
QSquantumsensing
QSVMquantumsupport-vectormachine
SVMsupport-vectormachine
TSATransportationSecurityAdministration
UAVuncrewedaerialvehicle
USCGU.S.CoastGuard
USSSU.S.SecretService
WMDweaponsofmassdestruction
intelligence(AI)andquantumcomputing(QC)—mighthavethepotentialtosignificantlyexpandthecapabilitiesavailabletoDHSinthefuture.AI—inparticular,itssubfieldofmachinelearning(ML)—isanumbrellaconceptofusingcomputerstorapidlysolveproblemsforwhichthedevelop-mentofalgorithmsbyhumanprogrammerswouldbecost-prohibitiveorotherwiseextremelydifficult(Murphy,2012).
QCattemptstoleveragetheprinciplesofquantummechan-ics(QM)toobtainquantifiableadvantagesovertraditionalcomputing,bothintermsofspeedandintheabilitytosolveverycomplexproblems.Unlikepreviousleapsintheprog-ressoradvancementofscience,suchasthenuclearprogramorthespaceprogram,whichwerestatesponsored,QCis,forthemostpart,incentivizedandpioneeredbyprivateandfor-profitcompaniesandbyacademicinstitutions(Parker,2021;Parkeretal.,2022).AIismorematurethanQCasadomain,andresearchinAIisdistributedwidelythroughacademiaandindustry.
Althoughthefullpotentialofthesetechnologiesisfarfrombeingrealized,DHScanpositionitscomponentstotakeadvantageoffutureadvancementsbyconsideringhowmatureQC-andAI-basedtechnologiesmightbeusedtoaffectDHSmissionoutcomes.Inthispaper,wearguethat
QCandAItools—iftheirpotentialisrealized—couldsupportDHSmissions,makingDHSmoreeffectiveandefficientandimprovingthelivesofDHSstaffandotherstakeholders.
Ourpredictionsarecontingentonwhethersuccess-fulquantumMLalgorithmscanbediscovered(i.e.,shownmathematicallyorempiricallytobeadvantageousovertheirclassicalcounterparts)andonwhethertheycanrunsmoothlyonpracticalquantumdevices.2Bothissuesarethesubjectofveryintensecutting-edgeresearch.
Inthispaper,webrieflyexplaintheconceptsofQCandAIandthendiscusspotentialapplicationstoDHS’smis-sions.WeconcludethepaperwithrecommendationsonhowDHScouldbestpositionitselftoleverageQCandpre-pareitsworkforce.
3
QuantumComputingandArtificialIntelligence
Astwofieldsofscienceandtechnology,bothAIandQChavegainedextremepopularityinadditiontotheiraccep-tanceinthescientificcommunity.AIhasprovedtobeavaluabletoolinmodernscienceandcomputing.QC,whichitselfisasubfieldofthewiderquantuminformationsciencediscipline,isatanearlierstageofdevelopmentthanAIisbutisstrivingtocatchupwithitsAIcousin.Inthepastdecadeorso,therehavebeenmanyattemptsatmergingthepromisedadvantagesofQCintothefieldofAI,although,todate,theseattemptshavemetwithmixedsuccess(SchuldandPetruccione,2018;seealsoBiamonteetal.,2017).
QuantumComputing
QCattemptstoleveragequantummechanicalphenomena,suchassuperposition,entanglement,andinterference,toobtainquantifiableadvantagesovertraditional,orclassi-cal,computing.QM—thetheoreticalbasisofQC—isoneofthemostsuccessfultheoriesof20th-centuryphysics,withexperimentaltestsverifyingitsvaliditytoincrediblepreci-sion(GriffithsandSchroeter,2018;Sakurai,1994).QMisafundamentaltheoryofnaturethatdescribesthesubatomicworldinwhichclassical(i.e.,Newtonian)physicsfails.Forinstance,inQC,thefamiliarnotionofaninformationbitbeingexclusivelyoff(0)oron(1)nolongerholds.Aquan-tumbit,knownasaqubit,existsinasuperpositionofoffandonsimultaneously—onlyuponmeasurementofaqubitisitforcedtotakeadefinite0or1valuewithspecificprob-abilities,therebycollapsingintoabit.
Thissuperpositionallowsforquantumparallelism,whichistheabilityofquantumcomputerstoevaluateafunctionformultipleinputvaluessimultaneously.Thekeytomanyprovenspeedupsinquantumalgorithmsispre-ciselythisparallelism(DeutschandJozsa,1992;NielsenandChuang,2010).Indeed,thisisagamechangerbecausethesolutionstoverycomplexproblemscannowbeencodedinaregistryofqubits,andresearcherscanextractthedesiredsolutionorpropertiesfromthesequbitsinacontrolledway.
Toproceedwiththisextraction,researchersmustturntheirattentiontootheruniquenotionsthatdonothaveclas-sicalcounterparts,suchasentanglementandinterference.3OneoutstandingexampleofsuchaspeedupandextractionprocedureisShor’salgorithmforprimefactorization,whichfindsprimefactorsofanintegerwithasuperpolynomialspeedup—animprovementoverthebest-knownclassicalalgorithms.4Thishasveryseriousimplicationsincryptog-raphy;asaconsequence,theNationalInstituteofStandardsandTechnologyisstudyinganewarrayofpostquantumcryptography(PQC)algorithmsthatdonotdependoninte-gerfactorization.5
However,theadvantagesofQCoverclassicalcomput-ingarenotstraightforward.Incertainsituations,ratherthansupplyingasuperpolynomialspeedup,QCprovidesamoremodestquadraticspeedup.Awell-studiedsearchalgorithmknownasGrover’salgorithmissuchaninstance.ManyofthequantumalgorithmsthatwediscussinthispaperfallintothequadraticspeedupcategorybecausetheyarederivativesofGrover’salgorithm.Effectively,thismeansthat,ifaclassicalalgorithmrequiresNiterationstoproducearesultwithacertainaccuracy,aquantumalgorithmcould
producethissameresultinonlyO(√)iterations,thereby
providingaquadraticspeedupinruntime.6
4
Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunitsandwhichtasksshouldbeoutsourcedtoquantumprocessingunits.
Asaresult,quantumcomputersarenotall-purposecomputersthatwillsomedayreplaceordinarycomputers.Quantumcomputerswilllikelybeemployedprimarilyinthemost-taxingoperationsandthosemostpronetocre-atingbottlenecks(e.g.,Kothari,2020).Indeed,onecouldthinkofquantumdevicesasbeingpowerfulenginesinalargechainofprocesses.Therefore,orchestrationacrosscomputingapproacheswillbekey.Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunits(includinghigh-performancecomputersandgraphics-processingunits)andwhichtasksshouldbeoutsourcedtoquantumprocessingunits.Evenoncequantumcomputerswork,therewillprobablybeabreakevenpointatwhichthequan-tumcomputerisworthwhileonlyfortasksthatarebiggerthansomethreshold.
HardwarealsoplacesconstraintsonQC.Severaltech-nologiesandengineeringparadigmsexisttoproducework-ingqubits:superconductors,iontraps,photonics,annealers,neutral-atomtraps,silicon-spinqubits,and(morespecu-latively)topologicalqubitsandnitrogen-vacancycenters.Thesetechnologies(exceptforannealers)sharethesamearchitecture,whichisknownasuniversalgate-basedcom-
puting.Currentdevicesfromprivate-sectorcompanies,federallyfundedresearchanddevelopmentcenters,anduniversitiesproduceverynoisyqubits,soqubitoperationsworksuboptimallyandslowly.Thismeansthat,evenifanalgorithmproducesatheoreticaladvantage,realizingthisadvantagepracticallyisstilldifficultbecausethedevicesarenotyetrobustenough.Certaintechniques,suchaserrormitigationanderrorcorrection,canhelpundothenoisetowhichqubitsarepronebytheirquantumnature.However,thesetechniquesarenotfullydeployableyetandsometimesadduptotheglobaloverheadofthealgorithm,therebyreducingitseffectivenessinsomecases(see,e.g.,GoogleQuantumAI,2023;Mandelbaum,Steffen,andCross,2023;Stamatopoulosetal.,2020;andWoernerandEgger,2019)forcertaintheoreticaloverheadsnotrelatedtoerrorcorrection.Devicesthatareimperfectareknownasnoisy,intermediate-scalequantumcomputers.Annealers,ontheotherhand,haveadifferentarchitecturealtogetherthatisnotgatebasedanddoesnotperformuniversalcalculations,butitexcelsatdiscreteoptimizationandoperationsresearchproblems.7
5
Insum,wenotethefollowingaboutthecurrentstatusofQC:
•TheonlyknownQCalgorithmforAIandMLisGrover’salgorithm.
•ThetheoreticalspeedupofGrover’salgorithmismodestandmightwellbewashedoutbyallneces-saryhardwareoverhead.
•OtherQCalgorithmsforAIandMLmightariseinthefuture,butwhethertheywillisstillunknown.
QuantumComputingandMachineLearning
ThesuccessesofAIarewelldocumented,andAIhasbecomeanindispensabletoolinmoderncomputing,whetherforcommercial,military,orsecurityapplications,asillustratedinKrelina(2021)andQuantumWorkingGroup(2021).ItthusbecomesnaturaltoaskwhetherQCcanfurtherboostMLbyprovidingadvantagesoverclassicalcomput-ing.GiventhesuccessofQMinphysicsontheonehandandthesuccessofMLincomputingontheotherhand,theexpectationsofquantumML(QML)are,ingeneral,dis-proportionatelyhuge(SchuldandPetruccione,2018).ButalthoughthecommercialandbusinessimplicationsofQMLarenowbeingexploredandaddressed,theresultshavenotyetmatchedtheexpectations.
Formany,AImeansMLforbigdata.Thisis,however,oneoftheapplicationsofAIforwhichQCistheleastuseful.AnyapplicationofquantumalgorithmsforthattypeofAIisprobablystillfarinthefuture,giventheneedforhardwareresources(memory,gatespeed,andotherconceptswedis-cussinthispaper)andbecauseitisnotknownyetwhetherQCwouldspeedupthatkindofAIeveninprinciplebecauseofsuchissuesasdata-loading,aswediscusslater.
AssumptionsUnderlyingThisPaper
Astheprecedingdiscussionillustrates,manytechnicalchal-lengeswithAIandQCremaintobesolved.Despitetheseissues,ingeneral,thispaperdoesnotfocusontimelinesorcurrenttechnologyreadinessbecauseAIandQCarestillintheprocessofmaturing.OurviewsonhowquantumtechnologiescouldenhanceAItechniquesarelargelyinde-pendentoftheunderlyingtechnologyusedtoproducethequantumdevicesonwhichtheseQMLalgorithmsaregoingtoberun.Instead,forthispaper,weassumetheexistenceofaworking,orclose-to-working,fault-tolerantquantumcomputer,focusingonwhattheexistenceofsuchatechnol-ogycouldmeanforDHScapabilities.
DHShaspubliclyexpressedinterestinquantumonlyforPQC(DHS,2022).OurviewssuggestthatDHScouldexpandtheseinterestsintootherquantumsubjects,suchasQCandquantumsensing(QS).Informedbyourinvestiga-tions,literaturereview,andprofessionalexperience,weputforwardintheconclusionasetofideasandrecommenda-tionsthatcouldassistDHSinleveragingQCsuccessfullytoprotecttheUnitedStates.
U.S.DepartmentofHomelandSecurityMissions
PerTheDHSStrategicPlan:FiscalYears2020–2024(DHS,2019),thedepartmenthassixprimarygoals:
•Counterterrorismandhomelandsecuritythreats.
•SecureU.S.bordersandapproaches.
•Securecyberspaceandcriticalinfrastructure.
•PreserveandupholdU.S.prosperityandeconomicsecurity.
6
•Strengthenpreparednessandresilience.
•ChampiontheDHSworkforceandstrengthenthedepartment.
Foreachofthesegoals,weprovidesomespecificexam-plesofhowAIorMLcouldaffectDHS’scapabilities.TheconclusionsinthispaperarebasedonourfamiliaritywiththescientificliteratureonQCandAIandonourpreviousandongoingpeer-reviewedscholarship.Whenpossible,wemaketheconnectiontoQMLanddevelopthepotentialbenefitsofprovidingquantumbooststoMLtasks.Notallinstancesoftechnologies’impactwillbepositive,and,inafewinstances,classicaltechniquesaremorethanenoughtoprovidetheneededcapabilitiesorQCsimplyfailstodeliveradvantagesoverclassicalmethods.
Asacaution,weemphasizethatourattemptsatfindinginstancesofprofitableusesofQMLhavenotbeenexhaus-tive,sotherecouldbeotherexamplesorsituationsinwhichquantumadvantagescouldbeimportantforotherDHSactivitiesthatarenotcontemplatedinthispaper.
Beforeproceeding,wementionthebalancethatmustbeachievedtoproduceapaperthatisinformativewithoutbeingexcessivelytechnical.WestrovetodescriberealisticideasandscenariosinwhichAIandQMcouldbemergedtoalleviatethecomputationaltasksthatDHScomponentsmustcompleteaspartofperformingtheirduties.Moreover,thereisnoshortageoftechnicalsourcesinwhichquantumalgorithmsandroutinesarecarefullyelaborated,andwerefertheinterestedreadertoBarnett(2009);Hidary(2019);NielsenandChuang(2010);RieffelandPolak(2014);Scherer(2019);SchuldandPetruccione(2018);SteebandHardy(2018);andWong(2022).However,thesesourcestendtoemphasizethequantitativeaspectsofthesealgorithmsand
largelyignorepotentialapplicationsinindustry,military,andsecurity.
CounterTerrorismandHomelandSecurityThreats
ThefirstDHSmissionistocounterterrorismandhomelandsecuritythreats.Thismissionhasfourobjectives:
•Collect,analyze,andshareactionableintelligence.
•Detectanddisruptthreats.
•Protectdesignatedleadership,events,andsofttargets.
•CounterWMDandemergingthreats.
QCandMLtogethercouldhelpDHSaccomplishthesegoalsinanyofseveralways.
Collect,Analyze,andShareActionableIntelligence
DHSaimstodevelop“timelyandactionableintelligencetoaccuratelyassessandpreventthreatsagainsttheUnitedStates”(DHS,2023).AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHScomponentsreceive.DHS’sintelligenceanddomainawarenessoperations,includingthoseintheOfficeofIntel-ligenceandAnalysis,theUSCG,andtheNationalOpera-tionsCenter,mustidentifythreatsbysiftingthroughtensofthousandsofvesselsoperatinginU.S.waters,thousandsofflightsinU.S.airspace,andthousandsoftipsandalertsfil-teringupfromstateandlocalpartners,almostallofwhichareinnocuousnoise.AlthoughDHSreceivesahugevolumeofinformation,itdoesnotcollectthatinformationopti-
7
AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHS
componentsreceive.
mally,pullinginalotofnoiseinawaythatrisksmissingimportantsignals.
MLapproaches,potentiallyenabledbyQC,couldtrainonthesedataandhelpDHSintelligenceagentsmorequicklyandaccuratelyidentifytheneedleinthehaystackofinformationtheyhandleeveryday.Largelanguagemodels(LLMs)arealreadyadeptatintegrationandanalysisoflargedatasets,asevidencedbytheperformanceofGenerativePretrainedTransformer(GPT)4onnumerousbenchmarkexams.QCcouldhelpoptimizeintelligencecollection,suchasfromUSCGpatrolsorU.S.CustomsandBorderProtec-tion(CBP)searches,tobetterinformintelligenceoperations.Furthermore,likewedowithproblemsinquantumchem-istry,quantumfinance,andgraphtheory,weexpectthatLLMscouldbeusedtodesigntailor-madequantumarchi-tecturesfortheseintelligencecollectionproblemsbyusingpriorknowledgefromtherelevantresearchcommunities.
DetectandDisruptThreats
AnothercomponentoftheDHSmissiontocounterterror-ismandhomelandsecuritythreatsistodetectanddisruptthreats,suchasthroughtheactionsthattheTransporta-tionSecurityAdministration(TSA)takestosecureairportsandairplanes.Asstatedearlier,matureQCshouldbeable
torapidlyoptimizepatrol,search,andscanstrategiesatcheckpoints,atcriticalinfrastructurelocations,andalongthebordersandapproaches.Theseinnovationswouldaidnotonlyinimprovingdatacollectionforfutureintelligencedevelopmentbutalsoindetectinganddisruptinganyactivethreatsinthepresent.
ProtectDesignatedLeadership,Events,andSoftTargets
TheUSSShastheprimaryroleinprotectingleadership,events,andsofttargetsforthedepartmentinmostcases,althoughtheFederalProtectiveServiceandtheOfficeofHomelandSecuritySituationalAwarenessalsoplayrolesintheprotectionoffederalbuildingsandevents,respectively.Akeytaskforeachofthesecomponentsistoconductriskassessments(ofevents,facilities,andpersonnel)tooptimizethelevelofprotectionthateachreceives,givenlimitedpro-tectionresources.
AnexampleofsuchariskassessmentistheSpecialEventAssessmentRatingsystem,whichdetermineswhatfederalprotectiveassistanceisneededforprivateevents.Theseassessmentsarecurrentlyconductedusingamixofdataanalysisandhumanjudgment,buttheadditionofQCandMLcouldintegratemanymoredatafeedsintothe
8
analysis,thusprovidingamorenuancedandoptimizeddistributionoffederalresourcesandpersonnel.ThiswouldallowDHStoprotectmoreevents,facilities,andpersonnelandprovidebetterassistancetothoseitcurrentlyprotects.
Duringprotectionoperations,thereareadditionalopportunitiesfortheapplicationoftheseemergingtechnol-ogies,includingtheclassificationoftargetsofinterest(e.g.,ataprotectedevent).Forinstance,noisy,intermediate-scalequantumdevicescouldbeusedtotrainaquantumcircuitforclassificationtasksusingexponentiallyfewerparam-etersthanaclassicalneuralnetwork(NN)wouldrequireforthesametask,withapparentlyminimalreductioninperformance(Schuldetal.,2020).Anotherexampleisthatfault-tolerantQCdevicescouldbeappliedtospeedupclas-sificationtasksbyutilizingthemanyquantumalgorithmsforlinearalgebraicroutinesthathavebeendevelopedintheliterature(Cao,Romero,andAspuru-Guzik,2018).Thesecouldbeexecutedeithercentrallyatacommandcenterbasedonsensorfeedsor,inthemoredistantfuture,attheedgebythesensorsthemselves.
Toidentifytargetsquicklyenoughthatactioncanbetakentopreventdangertoleadershipandevents,searchalgorithmsmusthavesufficientlylowrunningtimeandbeusableincombinationwithclassificationalgorithms.Thequantummechanicalpropertiesofinformation,includ-ingentanglementandsuperposition,havethepotentialtoquadraticallyreducetherunningtimeofsearchalgorithms.LLMscanbeusedtodesignnovelquantumarchitecturesthataretailoredtovariousproblems,soanLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbeespeciallyusefulinprotectingdesignatedleadership,events,andsofttargets.
CounterWeaponsofMassDestruction
DHSworksto“deter,detect,anddisrupttheuseofweaponsofmassdestruction(WMD)andhealthsecuritydangersasearlyinthethreatpathwayaspossible”(DHS,2019,p.16).ThisincludesemplacingdetectioncapabilitiesatportsofentryandacrosstheUnitedStatesandworkingwithinter-nationalpartnerstosecurepotentiallydangeroussubstancesandprecursors.
ImprovementsindetectioncapabilitiesforWMDusingQCcouldenhanceDHS’sabilitytodisruptWMDpathwaysathomeandabroad.OneapproachtointegratingQCcapa-bilitieswouldinvolvesendingdatafromclassicalsensorstoacentralizedQCcapability.However,thiswouldnecessi-tatethetransformationofdatafromclassicaltoquantumsothatthedatacouldbeusedinaquantumalgorithm.Thistransformation—usuallytermedloadingdataontoaquan-tumdevice—isanexpensiveprocess.Ontheotherhand,ifthedatawerealreadyinquantumform,suchasdatacol-lectedfromaquantumsensor(Krelina,2021;QuantumWorkingGroup,2021),and,ifaquantumalgorithmcouldbedeployedalmostimmediatelyonthisdata,thedata-loadingproblemcouldbebypassed.ThisQSwouldallowCBP,theCounteringWMDOffice,andotherstodetectchemical,biological,radiological,andnuclearthreatsmorequicklyandmoreeffectivelyandtobetterresolvealarmsinthefield.Althoughthismergingconceptisstillexperi-mental,suchacapabilitybeingevenpartiallyrealizedcouldsignificantlyboostthebenefitsofdetectingthesetypesofthreatsatportsofentryorinmetropolitanareas.
AnotheraspectofDHS’scounter-WMDeffortsishorizon-scanningforthreatsfromemergingtechnologies—includingpotentialthreatsresultingfromtheuseofQC,ML,andAI.Forinstance,quantumalgorithmsmightbe
9
AnLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbe
especiallyusefulinprotectingdesignatedleadership,events,andsofttargets.
employedtoacceleratethesynthesisofpoisons,nerveagents,biotechnologies,anddrugsthatareharmfulorillegal.
Theseemergingtechnologiescouldalsohavethepoten-tialtocounterthesamethreatsthattheyunleash.Forinstance,QCandAIcouldbeusedtodesigndrugstocoun-tertheeffectsofWMDandotherthreats.ManyadvancesindrugdesignhavecomefromAI—specifically,deepNNsandsupport-vectormachines(SVMs),whichuselargedatasetswiththousandsofmoleculardescriptors.BecausetheseMLalgorithmsarecomputationallyexpensive,therehasbeenarecentpushtousequantumcomputerstoaccelerateMLfordrugdesign.Forthistowork,thesetofmoleculardescrip-torsmustbecompressedforusewithaquantumcomputer. Recentresearchhasuncoveredamethodforcompress-inguptohundredsofthousandsofmoleculesforusewithSVMsanddata-reuploadingclassifiersonaquantumcom-puter(Batraetal.,2021).KushalBatraandhiscolleaguesconsideredsetsofmoleculardescriptorsrepresentingcoro-navirusdisease2019(COVID-19),plague(Yersiniapestis),andtuberculosis.Otherresearchinthisareahasexploitedthefactthatquantum-gateparameterexplorationoffersanadvantageoverNNparameterexplorationbecausetheprobabilisticnatureofquantumsystemsenablesgeneration
ofmoleculesthatwouldnotbeexploredbyaclassicalgen-erativeadversarialnetwork(Lietal.,2021).ThisideawasusedtodevelopnewQMLtechniquesfordrugdiscovery,includingaquantumgenerativeadversarialnetworkthatlearnspatternsfromthesetofmoleculardescriptorsandgeneratessmalldrugmoleculesandaquantumvariationalautoencoderthatperformsaprobabilisticsearchtogeneratelargedrugmolecules.AlthoughDHSwouldnotnecessarilydirectlyemploythesemethodstogeneratenewdrugsandcures,itcouldbenefitfromthemandcouldpreparetohelpdistributetheminanemergency.
SecureU.S.BordersandApproaches
DHShasacriticalmissiontosecureU.S.bordersandenforcecustomsandimmigrationlaws.Thismissioniscomplex,inlargepartbecauseofthesheersizeoftheinterfacebetweenU.S.bordersandtherestoftheworld.Forinstance,CBPactivelymonitorsthousandsofmilesofterritorialbordersand328portsofentry(CBP,2023),whiletheUSCGpatrols4millionsquaremilesofterritorialwatersandexclusiveeco-
10
AsAIadvancesfurther,theneedforahumanpilotmightberelaxed,anduncrewedsystemscouldactastrue
resourcemultipliersforCBP’slimitedhumancapital.
nomiczones(NationalOceanicandAtmosphericAdminis-tration,undated).
SecureandManageAir,Land,andMaritimeBorders
Giventhescopeofitsmission,CBPhasaworkforcechal-lengealongboththenorthernandsouthernborders:CBPhastoofewagentsconductingtoofewpatrolsacrosstoomuchborderarea.Currentoperationsarepersonnelinten-sive,requiringhumanpatrolsbetweenportsofentryatallhoursofthedayandnight.ThisworkforcerequirementhascompoundedbecauseofCBP’sdifficultyinretainingborderagents(see,e.g.,Gambler,2019)andtheincreasednumberofrefugeefamiliesattemptingtocrosstheborder,whichdivertsCBPresourcesawayfromlawenforcementandtowardmigrantaidandarrest(Morgan,2019).
Tocounteractthisshortage,CBPhasbeguntoemployautonomouscapabilities,andadvancesinQCandAIcouldfurtherempowerthesesystems.Since2012,CBPhasusedlargerMQ-9uncrewedaircrafttoconductchange-detectionsweepsalongthesouthernborder(CBP,2022).Inaddition,CBPhasalsobeguntousesmall,uncrewed
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国银杏内酯市场营销模式及渠道分析研究报告版
- 2025至2030中国厨电产品高端化转型与渠道变革研究报告
- 二十大安全课件
- 2026年石光中学教育(集团)实中校区招聘编外合同教师备考题库及参考答案详解一套
- 2026年招聘广州南沙人力资源发展有限公司招聘编外工作人员备考题库政府编外带答案详解
- 2026年未央区大明宫社区卫生服务中心招聘备考题库及完整答案详解1套
- 2026年西南计算机有限责任公司招聘21人备考题库及答案详解1套
- 2025至2030中国医药制造行业政策环境与市场前景研究报告
- 2025至2030中国口腔医疗连锁机构扩张速度及人才短缺分析研究报告
- 中国核工业二三建设有限公司2025年核级焊接技术校园招聘备考题库及一套参考答案详解
- 2026年及未来5年中国半导体热电系统行业市场全景监测及投资战略咨询报告
- 河南豫能控股股份有限公司及所管企业2026届校园招聘127人笔试备考试题及答案解析
- 海洋电子信息产业现状与发展路径研究
- 草原管护考试题及答案
- Unit 8 Let's Communicate!Section B 1a-1e 课件 2025-2026学年人教版八年级英语上册
- 2026年四川单招职高语文基础知识练习与考点分析含答案
- 2026年交管12123驾照学法减分题库100道【基础题】
- 寒假女生安全教育课件
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库及1套参考答案详解
- 6.2 中位数与箱线图 教学设计(2课时)2025-2026学年数学北师大版八年级上册
- 2024年常州工业职业技术学院单招职业适应性测试题库附答案解析
评论
0/150
提交评论