下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE4PAGE5高考真题(2024•全国III卷(理))已知函数.(1)探讨的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的全部值;若不存在,说明理由.【解析】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,,与冲突,所以不成立.若,区间上单调递增;在区间.所以,代入解得.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,解得,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.所以有区间上单调递减,所以区间上最大值为,最小值为即解得.综上得或.【答案】(1)见详解;(2)或.(2024•天津卷(理))已知,设函数若关于的不等式在上恒成立,则的取值范围为()A.B.C.D.【解析】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.【答案】C(2024•浙江卷)已知实数,设函数(1)当时,求函数的单调区间;(2)对随意均有求的取值范围.注:为自然对数的底数.【解析】(1)当时,,函数的定义域为,且:,因此函数的单调递增区间是,单调递减区间是.(2)由,得,当时,,等价于,令,则,设,,则,(i)当时,,则,记,则列表探讨:x()1(1,+∞)p′(x)﹣0+P(x)p()单调递减微小值p(1)单调递增(ii)当时,,令,则,故在上单调递增,,由(i)得,,由(i)(ii)知对随意,即对随意,均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高二班主任2024新学期工作计划
- 2024年下半年销售经理工作计划
- 市级公共机构201年节能工作推进计划
- 八年级班主任工作计划024年标准版
- 数学优生辅导计划
- 体卫艺年度计划总结
- 丽水学院《口腔颌面外科学(二)实验》2022-2023学年第一学期期末试卷
- 丽江文化旅游学院《美术鉴赏》2022-2023学年第一学期期末试卷
- 乳酸性酸中毒的临床特征
- 运动性疲劳的临床特征
- 七上语文期末考试复习计划表
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 使用溜灰管溜灰专项安全技术措施
- 东汽600MW机组润滑油系统说明书
- 蟾蜍药用价值的研究进展
- 35kv线路保护设计(共13页)
- 广州美术学院关于本科毕业论文、毕业创作(设计)工作的若干规定
- 铝酸钙代替石灰拜耳法溶出的提案
- 起重机传动装置的设计
- [大学英语考试复习资料]大学三级(A)模拟681
评论
0/150
提交评论