




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lesson4QuantumComputing(第四课量子计算)
Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)ReadingMaterial(阅读材料)
May18,2000—Theworldofquantummechanicsgoesagainstthegrainofeverydayexperience.It’san“AliceinWonderland”realmbeyondtheonesandzeroesofclassicalcomputing.Butifwecanfigureouthowtoputthisworldtowork,itwouldleadtoatechnologicalquantumleap,allowingustosolveproblemsthatwouldtakemillionsofyearstofigureoutusingpresent-daycomputers.AndthathashugeimplicationsfortheInternet—indeed,foranymeansofcommunicatingdata.
Present-daycomputingrestsonafoundationofbits,withinformationencodedwithinelectroniccircuitryasaseriesofonesandzeroes.Butascircuitsbecomemoreandmoreminiaturized,computerscomeclosertothefuzzythresholdofquantumphysics:Quantumobjects,suchaselectronsandothersubatomicparticles,canbethoughtofasexistinginmultiplestatessimultaneously:“up”aswellas“down”…“1”aswellas“0.”[1]Whenyouobserveaquantumobject,youtakeasnapshotofoneofthosestates—butyoualsodestroyquantuminformation.
Thisquantumrealmservesasthelowerlimitforclassicalcomputing.The“one-or-zero”conceptwon’tworkinaworldoffuzzy“one-and-zero”bits.
Butthisproperty,knownas“superposition,”opensthewaytoacompletelydifferentapproachtocomputing.Inthisapproach,onequantumbit—orqubit—enablesyoutomanipulatetwovaluesatthesametime.Asyoustringtogethermoreandmorequbits,thepowergrowsexponentially.Ifyoulinktwoqubitstogether,youcanworkwithfourvaluesatthesametime.Threequbitscanworkwitheightvalues,andsoon.Ifyoucangetupto40qubits,youcouldworkwithmorethanatrillionvaluessimultaneously.1Code-breaking
Whatcouldsuchcomputersbeusedfor?Oneimportantapplicationwouldbetofindtheprimefactorsofverylargenumbers.
Thisisn’tjustanemptymathematicalexercise.Primefactorizationhappenstobethefoundationforsecuredatacommunications.It’srelativelyeasytomultiplytwoprimenumberstogether(7,817and7,333,forexample),butnoonehasfoundaneasywaytodothecalculationinreverse—thatis,figureoutwhichtwoprimenumberscanbemultipliedtogethertoequal57,322,061.
Thisiswhatmakespublic-keycryptographypossible.Otherpeoplecansendyoumessagesthatarecodedusingtheproductoftwoprimes,butthatsecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.[2]
Yourcomputerautomaticallyhandlesallthiscodinganddecodinginasecureelectronictransaction.That’swhatprotectsyourcreditcardinformationfromelectroniceavesdropperswhenyoubuysomethingovertheInternet.Butsupposetheeavesdroppershadquantumcomputers:Withallthatcomputingpower,theycouldfigureouttheprimefactorsofevenincrediblylargenumbers—andcrackthecode.Thus,thedevelopmentofquantumcomputerswouldrequireacompletechangeinthemethodsusedtoprotectinformationtransmittedovertheInternetandother“secure”communicationslinks.2Code-making
Fortunatelyforcode-makers,quantumcomputingtechniquescouldbeusedaswelltoguaranteesecurity(atleastwithinanegligiblysmallprobability).Quantumcryptographyrestsonthefactthatquantuminformationcannotbemeasuredwithoutdisruptingit.Thesecret-messagesoftwarecouldbebuiltsothatattemptstoeavesdroponamessagewouldsetoffanalarm—andautomaticallyshutdowntransmission.
Anotherfeatureusefulforquantumcryptography—andessentialforquantumcomputing—isabizarrecharacteristiccalledentanglement.Twoquantumobjectscanbelinkedtogethersothatifyouobservetheresultofaninteractionwithoneoftheobjects,youcanfigureoutwhatthestateoftheotherobjectisaswell.[3]
Theentanglementholdsevenifthetwoobjectsarewidelyseparated.
Thismakespossiblean“action-at-a-distance”phenomenonoftencalledquantumteleportation—atermthatoftenleadspeopletothinkof“StarTrek”transporters.Inreality,what’sbeingteleportedisinformationaboutaquantumobject,nottheobjectitself.
Twopeoplecouldencodeinformation,tradeitbackandforth,andreconstructtheinformationusingentangledquantumsystems.Evenifeavesdroppersinterceptthecodedinformation,theycouldn’treadthemessagebecausetheywouldn’tbepartoftheentangledsystem.3MakingItReal
Whatformsdothesequantumsystemstake?Photons,ionsandatomicnucleialreadyarebeingputtowork,withthespinofthoseparticlesrepresentingonesandzeroessimultaneously.
ResearchersattheLosAlamosNationalLaboratoryhavedemonstratedaquantumcryptographyschemethatworksover30miles(48kilometers)ofopticalfiber.AttheNationalInstituteofStandardsandTechnology,twotrappedberylliumionshavebeenwiredtogetherthroughentanglement,potentiallyrepresentingtheworld’sfirsttwo-qubitcomputationaldevice.
Inadditiontoiontraps,nuclearmagneticresonancedevicesarehelpingscientistsusethespinofatomicnucleiinquantumcomputingexperiments.Thereareevenproposalstomakequantumcomputingdevicesoutofgoodoldsilicon.
PeterShor,anaward-winningmathematicianatAT&TLabs,saysitmaybepossibletodevelopa30-qubitcomputerwithinthenextdecade—butthatwouldbejustthestart.Itwouldtakehundredsorthousandsofnetworkedqubitstosolveproblemsbeyondthecapabilityofclassicalcomputers.Nooneknowswhenwe’llbeabletoreachthatpoint.Infact,someresearchersworrythatthetechnicalhurdlesaretoogreattoovercome.4ProblemsandSolutions
Gettingtheinformationout:Sincemeasurementdestroysquantuminformation,howdoyouactuallygettheresultsofyourcalculations?Theoutputfromaquantumcomputermightwellbeanalogoustoaninterferencepattern,Shorsays:Thecorrectanswerwouldbebuiltupthroughconstructiveinterference,whileincorrectanswerswouldbecanceledoutthroughdestructiveinterference.[4]
Scalingupthesystem:TheNISTexperimentshowsthatqubitscanbelinkedtogetherthroughentanglement,butcansuchnetworksbescaledupinsize?Quantuminformationhasatendencyto“leak”intotheoutsideenvironment,inaprocessknownasdecoherence.Thus,thequantumsystemhastobeisolatedfromoutsideinfluenceasmuchaspossible.
Compensatingforerrors:Nomatterwhatyoudo,quantumoperationsareinherently“noisy”.Howdoyoucorrectforerrors?Itturnsoutthatyoucanadaptclassicalerror-correctingtechniquestoquantumsystemstomakethemfault-tolerant.Iftheerrorrateislessthanonepartper10,000,youcanmakequantumcomputersworkeventhoughtheindividualoperationsyou’reapplyingtoyourqubitsaren’tperfectlyaccurate,Shorsays.
Ifwedodevelopworkablequantumcomputers,theywouldcomeinhandyformuchmorethancode-breakingandcode-making.Theycouldmakeiteasiertofindsolutionstoother“needle-in-a-haystack”problems—problemsforwhichnobetterapproachisknownthanexhaustivelysearchingalargesetofpossiblesolutionsforthecorrectone.[5]Wecouldgainnewinsightsintohowmolecules,atomsandsubatomicparticlesbehave—unlockingsecretsofthequantumworlditself.
Butintruth,wecan’timagineallthepotentialusesforquantumcomputingtoday—anymorethanthecreatorsofthefirstdigitalcomputers,ahalf-centuryago,couldhaveimaginedwheretheirpioneeringworkwouldeventuallylead.
1.quantumleapn.[物]量子跃迁,<喻>跃进,巨大突破。
2.implicationn.牵连,纠缠;含蓄,含意,暗示;【数】蕴涵(式); [pl.]推断;结论。
3.subatomicadj.小于原子的;亚原子的,次原子的。
4.snapshotn.快照,快相;简短描述;一晃眼;【计】抽点打印;瞬象。
5.superpositionn.重叠,重合,叠合。
6.qubit=quantumbit量子位。Vocabulary
7.factorizationn.因子分解(法),因式分解;编制计算程序。
8.cryptographyn.密码使用法,密码系统;密码术。
9.deciphervt.译解(密码等),解释n.密电译文。
10.negligiblyadj.可以忽略的,不予重视的。
11.eavesdropv.偷听n.屋檐水。eavesdroppern.偷听者。
12.entanglementn.缠结;牵连;陷入困境;为难;[pl.](有刺)铁丝网;障碍物。molecularentanglement分子缠结。
13.teleportationn.远距离传递,遥传:假定的传递方式,通常是指在瞬间让事物或数据于某点消失再于另一点出现。
14.iontraps离子阱;离子阀。用来防止电子束中的离子击中其它设备的一种装置,例如一块磁铁。
15.spinofatomicnuclei原子核的自旋。
16.destructiveinterference相消(性)干扰,破坏性干扰。
17.decoherencen.【电】散屑;脱散。
18.“needle-in-a-haystack”problem“大海捞针”问题。
[1]Butascircuitsbecomemoreandmoreminiaturized,computerscomeclosertothefuzzythresholdofquantumphysics:Quantumobjects,suchaselectronsandothersubatomicparticles,canbethoughtofasexistinginmultiplestatessimultaneously:“up”aswellas“down”…“1”aswellas“0.”
但是随着电路越来越小型化,计算机变得接近量子物理的模糊阈值尺寸:量子物体,如电子和其他亚原子的粒子,可以设想成多种状态同时存在的情况,上升伴随着下降,“1”与“0”共存。ImportantSentences
[2]Otherpeoplecansendyoumessagesthatarecodedusingtheproductoftwoprimes,butthatsecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.
其他人可以通过这两个素数的乘积来编码发送信息,而只有知道这两个素数因子的人才能解码加密的信息。
[3]Twoquantumobjectscanbelinkedtogethersothatifyouobservetheresultofaninteractionwithoneoftheobjects,youcanfigureoutwhatthestateoftheotherobjectisaswell.
两个量子目标可以链接在一起,因此如果你可以观测到它们中间的一个和它们的交互作用的状态,你就可以判断出另一个的状态。
[4]Theoutputfromaquantumcomputermightwellbeanalogoustoaninterferencepattern,Shorsays:Thecorrectanswerwouldbebuiltupthroughconstructiveinterference,whileincorrectanswerswouldbecanceledoutthroughdestructiveinterference.
量子计算机的输出有充分的理由可以和干涉图案类似,Shor说:正确的响应可以从相消干扰中建立,同时不正确的响应也可以从相消干扰中剔除。
[5]Theycouldmakeiteasiertofindsolutionstoother“needle-in-a-haystack”problems—problemsforwhichnobetterapproachisknownthanexhaustivelysearchingalargesetofpossiblesolutionsforthecorrectone.
他们能将其他一些“大海捞针”问题(那些除了从一组可能正确的结论中穷举搜索而没有其他一些好方法求解的问题)的求解变得容易些。
(1)Whichkindofcomputingrestsonafoundationofbits,withinformationencodedwithinelectroniccircuitryasaseriesofonesandzeroes?()
A. Quantumcomputing.
B. Present-daycomputing.
C. Parallelcomputing.
D. Distributedcomputing.QuestionsandAnswers
(2) Public-keycryptographycan()messagescodedbyusingtheproductoftwoprimes,andthesecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.
A. send
B. hide
C. store
D. synchronize
(3) WhichofthefollowingsayingsisNOTTrue?()
A. Primefactorizationhappenstobethefoundationforsecuredatacommunications.
B. Itmaybepossibletodevelopa30-qubitcomputerwithinthenextdecade.
C. Inreality,what’sbeingteleportedisinformationaboutaquantumobject,nottheobjectitself.
D. Quantuminformationhasatendencyto“leak”intotheoutsideenvironment,inaprocessknownasiontrap.
(4) Whichofthefollowingsisnotafeatureofquantumcomputing?()
A. Existinginmultiplestatessimultaneously.
B. Superposition.
C. Quantumcryptography.
D. Binarysystem.
(5) Whatproblemofquantumcomputershouldbesolved?()
A. “Needle-in-a-haystack”problems.
B. Decoherence.
C. Qubitsnetworksbescaledupinsize.
D. Allofthem.1. Whatcouldquantumcomputersbeusedfor?
2.Whatisan“action-at-a-distance”phenomenon?Problems
Althoughpracticalmachineslieyearsinthefuture,aformerlyfancifulideaisgainingplausibility.
ReadingMaterialAQuantumLeapforComputing
ByEricJ.LernerInBrief:
Systemsinwhichinformationobeysthelawsofquantummechanicscouldfarexceedtheperformanceofanyconventionalcomputer.Nowthattheprinciplesofquantumcomputinghavebeendemonstratedinthelab,IBMscientistsaretacklingtheformidabletaskofbuildingmachine.
Nomatterhowfastconventionalcomputersbecome,therewillalwaysbesomecalculationsthataretoolargeforthemtocompleteinreasonabletime.Hopingtocircumventtheselimitations,physicistshavebeguninthepastfewyearstoseriouslyentertainthepossibilitythataradicallydifferenttypeofcomputingcouldsolvecertainkindsofproblemsthataconventionalcomputercouldnotsolveinthelifetimeoftheuniverse.Called“quantumcomputing,”itharnessestheoftennonintuitivequantumpropertiesofindividualatomsandphotonstostoreandprocessinformation.Althoughithadbeenrealizedsincethe1980sthatquantumcomputerscould,intheory,outperformclassicalmachines,quantumcomputingwasuntilfiveyearsagogenerallyconsideredanesotericareaofinterest.Now,thatperceptionischanging,accordingtoNabilAmer,whocoordinatesIBMResearch’squantumcomputingefforts.“Progresshasbeenimpressive,”hesays.“Quantumcircuitshavebeenconstructed,error-correctioncodeshavebeentestedexperimentally,andonekindofextremelyefficientquantumalgorithm—forsearchingdatabases—hasbeenverifiedinaprototypequantumcomputer.”1BeyondClassicalPhysics
Althoughquantumcomputingisbasedonphysicalideaselaboratedinthe1920s,therecognitionthatquantummechanicsmightbeusefulforcomputingonlydawnedonscientistsinthe1980s.Onereasonisthatthecomputersofthe1940sand1950swerebuiltfromvacuumtubesandotherdevicesthatwereclearlyinthemacroscopicrealm,suggestsIBMFellowCharlesBennett,oneofthecreatorsofthebroaderfieldofquantuminformationtheory.Quantumconceptssimplydidn’tappearrelevant.
Nevertheless,asphysicistsbegantoconsiderthephysicallimitsofcomputing,theyweregraduallyledtowardthequantumarena.First,IBMFellowRolfLandauerdiscovered,in1961,thatenergyisuseduponlyduringirreversibleoperations,onesinwhichinformationisdiscarded.Basedonthatwork,Bennettshowedin1973thatfullyreversiblecomputation,whichdidnotconsumeanyenergy,wastheoreticallypossible.Sincequantumcomputationsalsoarereversible,experiencegainedinreversibleprogramminginthe1970sand1980sprovedusefulfordesigningquantumalgorithms.
Thepathtowardquantumcomputingbeganin1980,whenPaulBenioffofArgonneNationalLaboratorypublishedaquantummechanicalmodelforcomputation.Twoyearslater,RichardFeynmanintroducedtheideathatanyphysicalsystemcouldbesimulatedwithaquantumcomputer.ItwasDavidDeutschatOxfordUniversitywho,in1985,firstproducedamathematicaldescriptionofauniversalquantumcomputer—amachinethatcouldbeconstructedoutofquantumelementsandwouldinsomewaysbesuperiortoaconventionalcomputer.Butafloodofinterestinthefielddidnotemergetill10yearslater.2What“Better”Means
Itwasthediscoveryofjusthowmuchmorepowerfulaquantumcomputercouldbethatsetoffthecurrentwaveofactivity.In1994,PeterShorofAT&TLaboratoriesinventedanalgorithmthatcouldtakeadvantageofquantumphenomenatofactorlargenumbersandcouldhencebeused,forinstance,tocracktheRSAPublicKeyCryptosystem,usedbygovernmentsandcorporationsaroundtheworldforsecurecommunication.AnimportantsimplificationofShor’salgorithmwassubsequentlymadebyDonCoppersmithofIBM’sThomasJ.WatsonResearchCenter.
RSAisbasedontheideathatitiseasytomultiplytwolargenumberstogetathird,butverydifficulttofactorthatthirdlargenumbertogetthefirsttwo.Withconventionalcomputers,thedifficultyoffindingthefactorsofanumberisbelievedtoincreaseexponentiallywiththenumberofitsdigits.A250-digitnumber,forexample,takesroughlyamilliontimeslongertofactorthana130-digitnumber.Bymakingthenumberlongenough,onecanensurethatnoconventionalcomputerwillfactorthenumberinanyreasonablelengthoftime.ButShorshowedthataquantumcomputercouldfactornumbersmuchfaster,becausethenumberofstepsitrequiresisproportionaltothesquareofthenumberofdigits.Factoringa250-digitnumberisthereforeonlyfourtimesashardforaquantumcomputerasa130-digitone.3BettingOnSuccess
Shor’sresultsgaveatremendousboosttothenascentfieldofquantumcomputing,andsubsequentlyotherquantumalgorithmswerediscoveredthatalsorevealedaninherentadvantageofquantumcomputingforsolvingcertainkindofproblems.Suchconcepts,however,couldneverbeputtothetestwithoutaworkingquantumcomputer,andneitherShor’snortheotheralgorithmicworkaddressedthequestionofwhethersuchamachinecouldeverbebuilt.Butseveralgroupswerebettingthatitcould.
IBMwashometooneofthese.Intheearly1990s,Amerhadassembledasmall,informal“alternativesforcomputing”groupatWatsontolookatwhatthenextstepsincomputingmightbe.Togetthemembersthinkingasbroadlyaspossible,hechallengedthemwiththequestion,IfGodhadnotmadesilicon,howwouldwebuildcomputers?Afterexaminingvariousideas,Amersays,“wedecidedtofocusonquantumcomputingbecausewethoughtitpromisingandbecausewehadasolidbaseofexpertiseinthefieldofquantuminformation.”4TheWorldofQubits
Whatmakesaquantumcomputersodifferentfrom—andpotentiallysomuchmorepowerfulthan—aconventionalmachineisthepeculiarnatureofquantumbits,orqubits.Aqubitistheinformationunitprocessedbyaquantumcomputer.Physically,itcanberepresentedbyanyquantumsystemthatcanexistintwodifferentstates.Butthankstotheveryunclassicalconceptsof“superposition”and“entanglement”,aqubitisnotlimitedtothevaluesof0or1.
Onechoiceofaqubitmightbeanelectronspinninginamagneticfield.Wheneverthespinismeasured,itisalwaysfoundtobeeitheralignedwiththefield(“spin-up”state)oroppositetothefield(“spin-down”state).Butwhentheelectronisessentiallyisolatedfromtheenvironment—asitmustbeinaquantumcomputer—itbehavesasifitweresimultaneouslyinbothupanddownstates,withadiscreteprobabilityofbeinginthespin-upstateandanotherprobabilityofbeinginthespin-downstate.Thisphenomenonisknownassuperpositionofstates.
Entanglementistheothermainquantummechanicalprincipleuponwhichquantumcomputingrests.Apairofparticles,suchastwoelectronswithupanddownspins,canbeentangled—preparedinsuchawaythatthespinofoneelectronisguaranteedtobetheoppositeoftheother’s.Whatmakesthissostrangeisthat,untiloneoftheparticlesismeasured,neitherhasadefinitespindirection.Yet,assoonasoneismeasuredandfound,say,tobespinup,theotherwillbeknowntobeinthespin-downstate.Aslongasthetwoparticlesremainisolated—nomatterhowfaraparttheymaybe—theywillremainentangled,andmeasuringthestateofonewillimmediatelyprovideknowledgeaboutthestateoftheother.
Whiletheprobabilitiesoftheoutcomeofameasurementcanbecalculatedinadvance,theactualresultcannotbeknownbeforehand.Intuitively,onewouldnotexpectalackofpredictabilitytobeusefulforcomputing,butsuperpositionandentanglementarevaluablebecausetheygeneratearapidlyincreasingnumberofstatesasmorequbitscomeintoplay.So,whilea2-bitclassicalregistercanbeinonlyoneoffourpossiblebinaryconfigurations(00,01,10or11),aquantumregisterconsistingoftwoqubitscanstoreallfournumbersatthesametime,sinceeachqubitrepresentstwovalues.
Addingmorequbitsincreasestheregister’scapacityexponentially.Aquantumcomputercanthenperformlogicoperationson2ninputsinasinglecomputationalstep.Toperformthesametaskwithaclassicalcomputer,2nprocessorswouldhavetoworkinparallel,orelsethecomputationwouldhavetoberepeated2ntimes.Thisisthebasisforwhatisoftenreferredtoasquantumparallelism.5TwobyTwo
Aquantumcomputerisanapparatusinwhichthestatesofthequbitscanbemadetoevolveinadeterministicwayandtherebycarryoutacomputationbyoperatingonthequbitswithquantumlogicgates.Atfirst,itwasthoughtthattoperformthelogicaloperations,atleastthreequbitswouldhavetobemadetointeractinasinglegate,inamannersimilartoaclassicalANDgate,whichbringstogethertwoinputstoproduceanoutput.But,whileitisdifficulttomaketwoelectronsorotherparticlesapproachandwithdrawfromoneanotherprecisely,itisvirtuallyimpossibletodosowiththreeparticlessimultaneously.
SoonafterShor’salgorithmwaspublished,DavidDiVincenzoatWatsonfoundawayaroundthisproblem.Inwhatrepresentsoneofthemostimportantstepstowardapracticalcomputer,DiVincenzodemonstratedthatbringingpairsofparticlestogetherwouldbesufficienttocarryoutanylogicaloperation,evenoneinvolvinghundredsorthousandsofqubits.6QuantumHardware
Althoughtherearemanypossiblesystemsthatwouldserveasqubits,attentionhasfocusedonasmallnumberofpromisingones.AtIBM’sAlmadenResearchCenter,twoprojectsarecurrentlyunderwaytobuildactualquantumcomputers.Oneisbasedonions,theotheronspinningnuclei.“Iontraps”useelectromagneticforcestosuspendindividualions(atomslackingoneormoreelectrons)inanultrahighvacuum,isolatingthemfromtheirenvironmentsothatthesuperpositionoftheirstatescanevolveandinteract.Laserbeamsareusedtoswitchtheion’senergylevelsbetweenthe0and1statesaswellastopermittheionstointeract.Currently,Almaden’sRalphDeVoeisconstructingasimplequantumlogicgatecontainingafewionsinasingletrapthatwillprovideasophisticatedtoolfortestingfundamentaltheoriesofquantumcomputing.
Beginningin1996,IsaacChuang,nowatAlmaden,andNeilGershenfeldofMIT’sMediaLabpioneeredanotherapproach,basedonnuclearmagneticresonance(NMR)technology.Thisphysicalprocess—whichinvolvesorientingandmeasuringthespinsofatomicnucleiinamagneticfield—istheonethatservesasthebasisformedicalmagneticresonanceimaging(MRI)machines.
Nucleimakealmostperfectqubits,aswasfirstpointedoutbyDiVincenzoin1995.Likeelectrons,theycanhavespin-upandspin-downstates,but,inaddition,thesuperpositionsofnuclearspinstatestypicallylastmuchlongerthanthoseofelectronstatesorofmostotherphysicalsystems,thusallowingmoretimeforquantumcomputation.However,suchgoodisolationalsomeansthatlargenumbersofnuclei,about1018,areneededtobeabletocreateanobservablesignal.Sincethesenucleiarenearlyrandomlyorientedatroomtemperature,mostNMRapplicationsneverexplorethequantumbehaviorofnuclei.
ButChuangandGershenfelddevelopedanewmethod,usingtraditionalNMRtools,thatmakestheroom-temperaturenucleibehaveasiftheywereinaverycoldsystem,sothatallthemeasuredspinsappeartobeorientedinthesamedirection.ThispermitsobservationofthequantumbehaviorofnuclearspinsinmoleculesandhenceprovidesabasisforquantumcomputationwithNMR.Thenewmethod,whichuseschloroformmolecules,appliestworadio-frequencypulsesofdifferentdurationstocontrolthespinstates.Apulseofacertainlengthflipsaspinfromuptodown,whereasapulseofhalfthatdurationcreatesasuperpositionstateofupanddown.
Calculationscanbeperformedbecausethespin’sevolutionaftertheflipisinfluencedbythestateofadjacentatomsinthesamemolecule.Iftheadjacentatoms’nuclearspinisup,thenasecondhalfpulse,appliedafteranappropriateevolutiontime,willflipthespinofthefirstnucleusdown.Iftheadjacentnuclearspinisdown,thesamehalfpulsewillresultinanupspin.Thisiswhatcomputerscientiststerman“exclusiveORgate”.
ChuangandGershenfeldusedasequenceofsuchpulsestoimplementaquantumalgorithminventedbyLovGroverofLucentTechnologies’BellLabs.Thealgorithmallowsdatabasestobesearchedfasterthanispossiblewithconventionaltechniques.Forexample,tofindaniteminalistofnentrieswouldtakeaclassicalcomputer,onaverage,n/2tries.Grover'salgorithmonaquantumcomputerreducesthenumberoftriestothesquarerootofn.AlthoughChuangandGershenfeld’simplementationinvolvedonlytwoqubits,itwasthefirsttimeaquantumcalculationofanysizehadbeenperformed.Itprovedthatquantumcomputingcanwork.7MoreQubits
Othergroupsaroundtheworldhaveinitiatedexperimentsinquantumcomputing.Caltech,Stanford,Oxford,LosAlamosNationalLaboratory,theNationalInstituteofStandards,theUniversityofInnsbruckandtheUniversityofCaliforniaatBerkeleyaredevelopingimplementationsaimedathandlingafewqubits.Howeve
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中文材料采购合同样本
- 2025-2030安全毒品探测器行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030婴儿辅食市场发展分析及行业投资战略研究报告
- 2025-2030婴儿成套服装产业市场深度调研及发展趋势与投资战略研究报告
- 2025-2030复合氧化物陶瓷行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 个人卖房合同标准文本
- 2025-2030国内脂肪测量仪行业市场发展分析及竞争格局与投资机会研究报告
- 2025-2030国内中药行业市场深度调研及发展前景与投资机会研究报告
- 2025-2030口服和局部麻醉药行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030医用车市场行业市场现状供需分析及投资评估规划分析研究报告
- 预防传染病与食品安全
- 2025年新疆天泽水利投资发展有限公司招聘笔试参考题库含答案解析
- 2025年郑州卫生健康职业学院单招职业适应性测试题库含答案
- 氟化工产品考核试卷
- 《MATLAB基础及应用》全套教学课件
- 2024年亳州利辛县第二人民医院社会招聘护理笔试真题
- 2025年保密知识试题库(附参考答案)
- 2025年临床医师定期考核必考复习题库及答案(900题)
- 创伤患者的急救与护理
- 三年级下册英语-期中测试卷(一)
- 【MOOC】航运管理-大连海事大学 中国大学慕课MOOC答案
评论
0/150
提交评论