版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用配方法求解一元二次方程教学目标【知识与技能】理解配方法的意义,会用配方法解二次项系数为1的一元二次方程.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.【教学重点】运用配方法解二次项系数为1的一元二次方程.【教学难点】了解并掌握用配方求解一元二次方程.教学过程一、情境导入,初步认识1.根据完全平方公式填空:(1)x2+6x+9=()2(2)x2-8x+16=()2(3)x2+10x+()2=()2(4)x2-3x+()2=()22.解下列方程:(1)(x+3)2=25;(2)12(x-2)2-9=0.3.你会解方程x2+6x-16=0吗?你会将它变成(x+m)2=n(n为非负数)的形式吗?试试看,如果是方程2x2+1=3x呢?【教学说明】利用完全平方知识填空,为后面学习打下基础.二、思考探究,获取新知思考:怎样解方程x2+6x-16=0?x2+6x-16=0移项:x2+6x=16两边都加上9,即,使左边配成x2+2bx+b2的形式:x2+6x+9,右边为:16+9;写成平方形式:(x+3)2=25降次:x+3=±5解一次方程:x+3=5,x+3=-5,∴x1=2,x2=-8【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能逆向转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将x2+px+q=0形式转化为(x+m)2=n(n≥0)的形式.【归纳结论】通过配成完全平方式的方法得到一元二次方程的根,这种方法称为配方法.三、运用新知,深化理解1.解方程(注:学生练习,教师巡视,适当辅导).(1)x2-10x+24=0;(2)(2x-1)(x+3)=5;(3)3x2-6x+4=0.解:(1)移项,得x2-10x=-24配方,得x2-10x+25=-24+25,由此可得(x-5)2=1,x-5=±1,∴x1=6,x2=4(2)整理,得2x2+5x-8=0.移项,得2x2+5x=8二次项系数化为1得x2+x=4配方,得x2+x+()2=4+()2由此可得(x+)2=x+=∴x1=,x2=(3)移项,得3x2-6x=-4二次项系数化为1,得x2-2x=配方,得x2-2x+12=+12(x-1)2=因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式不成立,即原方程无实数根.2.用配方法将下列各式化为a(x+h)2+k的形式.(1)-3x2-6x+1;(2)y2+y-2;(3)0.4x-0.8x-1.【教学说明】化二次三项式ax2+bx+c(a≠0)为a(x+h)2+k形式分以下几个步骤:(1)提取二次项系数使括号内的二次项系数为1;(2)配方:在括号内加上一次项系数一半的平方,同时减去一次项系数一半的平方;(3)化简、整理.本题既让学生巩固配方法,又为后面学习二次函数打下基础.四、师生互动,课堂小结1.本节课学习的数学知识是用配方法解一元二次方程;2.本节课学习的数学方法是:①转化思想,②根据实际问题建立数学模型;3.用配方法求解一元二次方程的一般步骤是什么?(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x+h)2=k的形式;(4)用直接开平方法解变形后的方程.【教学说明】使学生在直观的基础上学习归纳,促进学生形成科学的、系统的数学知识体系.教材反思在教学过程中,由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究并发现结论,教师做学生学习的引导者、合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学学校年度计划
- 历史教师学年教学计划
- 2024机关后勤工作计划范文
- 白酒销售2024工作计划白酒销售工作计划
- 2024年公司工作计划书模板
- 辽宁科技学院《药物分析实验》2021-2022学年第一学期期末试卷
- 丽水学院《外国文学(二)》2021-2022学年第一学期期末试卷
- 丽江文化旅游学院《民族民间工艺》2023-2024学年第一学期期末试卷
- 青海海南特色旅游
- 山西省运城市2023-2024学年高二物理上学期9月月考试题a卷含解析
- 双方版《国内明保理合同》范本
- Ⅰ类切口手术预防使用抗菌药物持续改进
- 仪表验收标准
- 退耕还林工程
- 轿车前悬架设计大学毕设论文
- 英国工人阶级状况
- 2023乳腺癌术后淋巴水肿中西医结合诊治中国专家共识(最全版)
- 内容一军事运输
- DBJ51-014-2021 四川省建筑地基基础检测技术规程
- VTE相关知识考核试题及答案
- 冰岛-Microsoft-PowerPoint-演示文稿
评论
0/150
提交评论