![高中数学复习第3讲 空间点、直线、平面之间的位置关系 新题培优练公益_第1页](http://file4.renrendoc.com/view12/M01/39/0F/wKhkGWdbp7KAbdmQAAHT6jjK2HI422.jpg)
![高中数学复习第3讲 空间点、直线、平面之间的位置关系 新题培优练公益_第2页](http://file4.renrendoc.com/view12/M01/39/0F/wKhkGWdbp7KAbdmQAAHT6jjK2HI4222.jpg)
![高中数学复习第3讲 空间点、直线、平面之间的位置关系 新题培优练公益_第3页](http://file4.renrendoc.com/view12/M01/39/0F/wKhkGWdbp7KAbdmQAAHT6jjK2HI4223.jpg)
![高中数学复习第3讲 空间点、直线、平面之间的位置关系 新题培优练公益_第4页](http://file4.renrendoc.com/view12/M01/39/0F/wKhkGWdbp7KAbdmQAAHT6jjK2HI4224.jpg)
![高中数学复习第3讲 空间点、直线、平面之间的位置关系 新题培优练公益_第5页](http://file4.renrendoc.com/view12/M01/39/0F/wKhkGWdbp7KAbdmQAAHT6jjK2HI4225.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
[基础题组练]1.四条线段顺次首尾相连,它们最多可确定的平面个数有()A.4个 B.3个C.2个 D.1个解析:选A.首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.3.已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.4.如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线 B.A,M,O,A1不共面C.A,M,C,O不共面 D.B,B1,O,M共面解析:选A.连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1.又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.所以A,M,O三点共线.5.(2019·成都第一次诊断性检测)在各棱长均相等的直三棱柱ABCA1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.eq\r(3) B.1C.eq\f(\r(6),3) D.eq\f(\r(2),2)解析:选C.法一:如图,取AA1的中点P,连接PN,PB,则由直三棱柱的性质可知A1M∥PB,则∠PBN为异面直线A1M与BN所成的角(或其补角).设三棱柱的棱长为2,则PN=eq\r(2),PB=eq\r(5),BN=eq\r(3),所以PN2+BN2=PB2,所以∠PNB=90°,在Rt△PBN中,tan∠PBN=eq\f(PN,BN)=eq\f(\r(2),\r(3))=eq\f(\r(6),3),故选C.法二:以N为坐标原点,NB,NC所在的直线分别为x轴,y轴,过点N与平面ABC垂直的直线为z轴,建立如图所示的空间直角坐标系,设AB=2,则N(0,0,0),A1(0,-1,2),B(eq\r(3),0,0),M(eq\r(3),0,1),所以eq\o(NB,\s\up6(→))=(eq\r(3),0,0),eq\o(A1M,\s\up6(→))=(eq\r(3),1,-1),设直线A1M与BN所成的角为θ,则cosθ=|cos〈eq\o(NB,\s\up6(→)),eq\o(A1M,\s\up6(→))〉|=eq\f(|\o(NB,\s\up6(→))·\o(A1M,\s\up6(→))|,|\o(NB,\s\up6(→))|·|\o(A1M,\s\up6(→))|)=eq\f(3,\r(3)×\r(5))=eq\f(\r(15),5),则sinθ=eq\f(\r(10),5),tanθ=eq\f(\r(6),3).6.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且eq\f(CF,CB)=eq\f(CG,CD)=eq\f(2,3),则下列说法正确的是________.①EF与GH平行;②EF与GH异面;③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;④EF与GH的交点M一定在直线AC上.解析:连接EH,FG(图略),依题意,可得EH∥BD,FG∥BD,故EH∥FG,所以E,F,G,H四点共面.因为EH=eq\f(1,2)BD,FG=eq\f(2,3)BD,故EH≠FG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上.答案:④7.一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的是________(填序号).解析:将平面展开图还原成正方体(如图所示).对于①,由图形知AF与GC异面垂直,故①正确;对于②,BD与GC显然成异面直线.如图,连接EB,ED,则BM∥GC,所以∠MBD即为异面直线BD与GC所成的角(或其补角).在等边△BDM中,∠MBD=60°,所以异面直线BD与GC所成的角为60°,故②正确;对于③,BD与MN为异面垂直,故③错误;对于④,由题意得,GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故④错误.综上可得①②正确.答案:①②8.已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为________.解析:如图所示,将直三棱柱ABCA1B1C1补成直四棱柱ABCDA1B1C1D1,连接AD1,B1D1,则AD1∥BC1,所以∠B1AD1或其补角为异面直线AB1与BC1所成的角.因为∠ABC=120°,AB=2,BC=CC1=1,所以AB1=eq\r(5),AD1=eq\r(2).在△B1D1C1中,∠B1C1D1=60°,B1C1=1,D1C1=2,所以B1D1=eq\r(12+22-2×1×2×cos60°)=eq\r(3),所以cos∠B1AD1=eq\f(5+2-3,2×\r(5)×\r(2))=eq\f(\r(10),5).答案:eq\f(\r(10),5)9.在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)如图,连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.因为AB1=AC=B1C,所以∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1.因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF⊥AC.所以EF⊥A1C1.即A1C1与EF所成的角为90°.10.如图,在三棱锥PABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=eq\f(π,2),AB=2,AC=2eq\r(3),PA=2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值.解:(1)S△ABC=eq\f(1,2)×2×2eq\r(3)=2eq\r(3),三棱锥PABC的体积为V=eq\f(1,3)S△ABC·PA=eq\f(1,3)×2eq\r(3)×2=eq\f(4\r(3),3).(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=eq\r(2),AD=2,cos∠ADE=eq\f(22+22-2,2×2×2)=eq\f(3,4).故异面直线BC与AD所成角的余弦值为eq\f(3,4).[综合题组练]1.(应用型)在棱长为1的正方体ABCDA1B1C1D1中,E,F分别是DD1和AB的中点,平面B1EF交棱AD于点P,则PE=()A.eq\f(\r(15),6) B.eq\f(2\r(3),3)C.eq\f(\r(3),2) D.eq\f(\r(13),6)解析:选D.过点C1作C1G∥B1F,交直线CD于点G,过点E作HQ∥C1G,交CD延长线,C1D1于点H,Q,连接B1Q,HF交AD于点P,HQ∥B1F,所以Q,H,F,B1四点共面,易求得HD=D1Q=eq\f(1,4),由△PDH∽△PAF可得eq\f(AP,PD)=eq\f(AF,HD)=2,则PD=eq\f(1,3),在Rt△PED中,PE=eq\r(\f(1,9)+\f(1,4))=eq\f(\r(13),6),故选D.2.(2019·宁波模拟)如图,在直二面角ABDC中,△ABD,△CBD均是以BD为斜边的等腰直角三角形,取AD的中点E,将△ABE沿BE翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是()A.BC与平面A1BE内某直线平行B.CD∥平面A1BEC.BC与平面A1BE内某直线垂直D.BC⊥A1B解析:选D.连接CE,当平面A1BE与平面BCE重合时,BC⊂平面A1BE,所以平面A1BE内必存在与BC平行和垂直的直线,故A,C可能成立;在平面BCD内过B作CD的平行线BF,使得BF=CD,连接EF,则当平面A1BE与平面BEF重合时,BF⊂平面A1BE,故平面A1BE内存在与BF平行的直线,即平面A1BE内存在与CD平行的直线,所以CD∥平面A1BE,故C可能成立.若BC⊥A1B,又A1B⊥A1E,则A1B为直线A1E和BC的公垂线,所以A1B<CE,设A1B=1,则经计算可得CE=eq\f(\r(3),2),与A1B<CE矛盾,故D不可能成立.故选D.3.(2019·济南模拟)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于O,取BE的中点G,连接OG,CG,则OG∥BD且OG=eq\f(1,2)BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=eq\r(CD2+CE2)=eq\r(5),所以CO=eq\f(1,2)CF=eq\f(\r(5),2).易得BE⊥平面CDFE,所以BE⊥DE,所以BD=eq\r(DE2+BE2)=eq\r(6),所以OG=eq\f(1,2)BD=eq\f(\r(6),2).易知CE⊥平面ABEF,所以CE⊥BE,又GE=eq\f(1,2)BE=eq\f(1,2),所以CG=eq\r(CE2+GE2)=eq\f(\r(5),2).在△COG中,由余弦定理得,cos∠COG=eq\f(OC2+OG2-CG2,2OC·OG)=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))\s\up12(2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))\s\up12(2),2×\f(\r(5),2)×\f(\r(6),2))=eq\f(\r(30),10),所以异面直线BD与CF所成角的余弦值为eq\f(\r(30),10).答案:eq\f(\r(30),10)4.(创新型)如图,在矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下列四个命题中不正确的是________(填序号).①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.解析:取DC的中点F,连接MF,BF,则MF∥A1D且MF=eq\f(1,2)A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB是定值,所以M是在以B为球心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;若存在某个位置,使DE⊥A1C,则因为DE2+CE2=CD2,即CE⊥DE,因为A1C∩CE=C,则DE⊥平面A1CE,所以DE⊥A1E,与DA1⊥A1E矛盾,故③不正确.答案:③5.(创新型)如图,已知正方体ABCDA1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,点N在正方体的底面ABCD内运动,则MN的中点P的轨迹的面积是________.解析:连接DN,则△MDN为直角三角形,在Rt△MDN中,MN=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人事档案管理服务合同
- 高层住宅窗户防盗性能规范协议
- 2025年项目管理外包服务协议
- 2025年商务中心租凭协议样本
- 2025年口腔服务机构协作协议
- 2025年公寓室内设计委托协议
- 上海工商股权变更合同
- 个人股份赠与合同样本
- 产品分销合同协议书
- CNC机床加工业务合同范本
- 中国储备粮管理集团有限公司兰州分公司招聘笔试真题2024
- 第1课 隋朝统一与灭亡 课件(26张)2024-2025学年部编版七年级历史下册
- 提高金刚砂地坪施工一次合格率
- 【历史】唐朝建立与“贞观之治”课件-2024-2025学年统编版七年级历史下册
- 产业园区招商合作协议书
- 2024年广东省公务员录用考试《行测》真题及答案解析
- 2025新译林版英语七年级下单词默写表
- 盾构标准化施工手册
- 天然气脱硫完整版本
- 中欧班列课件
- 2025届高三数学一轮复习备考经验交流
评论
0/150
提交评论