湖北省腾云联盟2022-2023学年高三上学期10月联考数学试卷_第1页
湖北省腾云联盟2022-2023学年高三上学期10月联考数学试卷_第2页
湖北省腾云联盟2022-2023学年高三上学期10月联考数学试卷_第3页
湖北省腾云联盟2022-2023学年高三上学期10月联考数学试卷_第4页
湖北省腾云联盟2022-2023学年高三上学期10月联考数学试卷_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学精编资源2/2腾·云联盟2022—2023学年度上学期高三年级十月联考数学试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,,则为()A. B. C. D.2.已知复数,为的共轭复数,则()A.i B. C.1 D.3.准线方程为抛物线的标准方程为()A. B. C. D.4.已知为的重心,记,,则()A. B. C. D.5.投掷一枚质地均匀的骰子,下列说法中错误的是()A.在前5次掷出的点数都是偶数的条件下,第6次掷出的点数仍是偶数的概率为B.投掷两次掷出的点数之和为7的概率最大C.投掷十次,掷出的点数之和的期望为35D.投掷两次,至少有一次掷出的点数为3的概率为6.一个大风车的半径为8m,匀速旋转的速度是每12min旋转一周.它的最低点离地面2m,风车翼片的一个端点从开始按逆时针方向旋转,点离地面距离与时间之间的函数关系式是()A. B.C D.7.数列满足,,且对任意正整数,有,则的最小值为()A. B. C. D.8.已知,,,则,,的大小关系为()A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题正确的是()A.“”是“”的充分不必要条件B.命题“任意,都有”的否定是“存在,使得”C.设,,则“且”是“”的必要不充分条件D.设,,则“”是“”的必要不充分条件10.正方体的棱长为4,点,分别为棱,上的动点,且满足,则以下命题正确的有()A.三角形的面积始终保持不变 B.直线始终在平面内C.三棱锥的体积始终不变 D.直线可能与平面垂直11.已知函数定义域为,函数的图象关于点对称,函数的图象关于直线对称,下列结论正确的有()A. B. C. D.12.函数的大于0的零点为,函数的大于1的零点为,下列判断正确的是(提示:)()A B. C. D.三、填空题:本题共4小题,每小题5分,共20分.13.展开式中的常数项是______.14.已知圆,直线,若直线截圆所得弦长为2,则______.15.已知,,且,则的最小值为______.16.一矩形的一边在轴上,另两个顶点在函数的图像上,如图,则此矩形绕轴旋转而成的几何体的体积的最大值是___________.四、解答题.17.已知数列的前项和为,,.(1)证明:为等比数列;(2)求.18.已知的内角,,所对的边分别为,,,记面积为,且满足.(1)求角;(2)若,且,求.19.在图1的直角梯形中,,,,,为的中点,沿将梯形折起,使得,得到如图2的四棱锥.(1)证明:平面平面;(2)在线段上是否存在点,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点的位置;若不存在,请说明理由.20.甲,乙,丙三人进行相互传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的一人.(1)当传球3次后就停止传球,求球在乙手上次数的分布列与期望;(2)求第次传球后球恰好在甲手上的概率.21.已知椭圆经过点,且离心率为.(1)求椭圆的标准方程;(2)设过点直线与椭圆交于,两点,设坐标原点为,线段的中点为,求的最大值.22.已知函数,其中实数.(1)当时,求函数的单调性;(2)若函数有唯一零点,求的值.

腾·云联盟2022—2023学年度上学期高三年级十月联考数学试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,,则为()A B. C. D.【答案】B【解析】【分析】要得到,即求的定义域,从而得到的值.【详解】因为,所以而,所以故选:B2.已知复数,为的共轭复数,则()A.i B. C.1 D.【答案】B【解析】【分析】根据共轭复数概念和复数除法计算即可.【详解】由题可知,故选:B3.准线方程为的抛物线的标准方程为()A. B. C. D.【答案】D【解析】【分析】的准线方程为.【详解】的准线方程为.故选:D.4.已知为的重心,记,,则()A. B. C. D.【答案】A【解析】【分析】延长AD交BC于点D,再利用三角形重心定理结合向量的线性运算求解作答.【详解】在中,延长AO交BC于点D,如图,因为的重心,则点D为线段BC的中点,,所以.故选:A5.投掷一枚质地均匀的骰子,下列说法中错误的是()A.在前5次掷出的点数都是偶数的条件下,第6次掷出的点数仍是偶数的概率为B.投掷两次掷出的点数之和为7的概率最大C.投掷十次,掷出的点数之和的期望为35D.投掷两次,至少有一次掷出的点数为3的概率为【答案】D【解析】【分析】根据古典概型概率公式,事件的独立性及随机变量的期望公式逐项分析即得.【详解】对于A,由题可知每次投掷一枚质地均匀的骰子不会影响下一次掷出的骰子的点数,故第6次掷出的点数仍是偶数的概率为,故A正确;对于B,投掷两次共出现的结果共有种,123456123456723456783456789456789105678910116789101112所以点数之和为2出现1次,点数之和为3出现2次,点数之和为4出现3次,点数之和为5出现4次,点数之和为6出现5次,点数之和为7出现6次,点数之和为8出现5次,点数之和为9出现4次,点数之和为10出现3次,点数之和为11出现2次,点数之和为12出现1次,所以投掷两次掷出的点数之和为7的概率最大,概率为,故B正确;对于C,投掷一枚质地均匀的骰子出现的各个点数的概率均为,所以投掷一次骰子出现的点数的期望为,所以投掷十次,掷出的点数之和的期望为,故C正确;对于D,由题可知投掷两次,至少有一次掷出的点数为3的概率为,故D错误.故选:D.6.一个大风车的半径为8m,匀速旋转的速度是每12min旋转一周.它的最低点离地面2m,风车翼片的一个端点从开始按逆时针方向旋转,点离地面距离与时间之间的函数关系式是()A. B.C. D.【答案】C【解析】【分析】建立平面直角坐标系,设出函数解析式,再根据给定的条件求解其待定系数作答.【详解】以过风车中心垂直于地面的竖直向上的直线为y轴,该直线与地面的交点为原点,建立坐标系,如图,依题意,设函数解析式为,显然,则,,函数的周期,则,因当时,,即有,则,于是得,所以点离地面距离与时间之间的函数关系式是.故选:C7.数列满足,,且对任意正整数,有,则的最小值为()A. B. C. D.【答案】D【解析】【分析】构造法求的通项公式,再用累加法求出的通项公式即可求解.【详解】由得,,即,所以数列是以为首项,1为公差的等差数列,所以,所以,所以,所以,对称轴,所以当或8时,有最小值为.故选:D.8.已知,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】对,,变形后构造函数,利用极值点偏移证明,,的大小关系.【详解】要比较,,等价于比较的大小,等价于比较,即比较,构造函数,,令得,令得,所以在单调递增,单调递减.所以,因为,所以最大,即,,中最大,设,结合的单调性得,,先证明,其中,即证,令,,其中,则,所以,函数在上为增函数,当时,,所以,当时,,则有,由可知,所以,因为,所以即,因为,在单调递增,所以,即,因为所以所以,即,因为,在单调递减.所以,即,即,综上,,故选:B.【点睛】关键点点睛:应用对数平均不等式(需证明)证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到;③利用对数平均不等式来证明相应的问题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题正确是()A.“”是“”的充分不必要条件B.命题“任意,都有”的否定是“存在,使得”C.设,,则“且”是“”的必要不充分条件D.设,,则“”是“”的必要不充分条件【答案】AD【解析】【分析】根据充分必要条件的定义以及不等式的性质可判断.【详解】当时,当时,即即,解得或,所以“”是“”的充分不必要条件,故A正确;命题“任意,都有”的否定是“存在,使得”,故B错误;当时可取,不满足且,所以“且”是“”的充分不必要条件,故C错误;时,由可得且,所以“”是“”的必要不充分条件,故D正确.故选:AD.10.正方体的棱长为4,点,分别为棱,上的动点,且满足,则以下命题正确的有()A.三角形的面积始终保持不变 B.直线始终在平面内C.三棱锥的体积始终不变 D.直线可能与平面垂直【答案】BC【解析】【分析】取特值计算判断A;证明点共面判断B;利用等体积法推理判断C;利用反证法推理判断D作答.【详解】在正方体中,对于A,当F为的中点时,点E必为的中点,,而,底边EF上的高,,当点F与点B重合时,点E与点必重合,此时必为直角三角形,,的面积为,显然两种情况下的面积不同,A不正确;对于B,在棱上取点G,使,连接,如图,因,则四边形是平行四边形,有,四边形平行四边形,则有,因,于是得,而,即四边形是平行四边形,则有,因此点共面,直线始终在平面内,B正确;对于C,由选项B知,,,则四边形为平行四边形,,而三棱锥与三棱锥同高,因此是定值,C正确;对于D,显然正方体的对角面是矩形,且,因此与不垂直,若直线与某个位置的平面垂直,由B选项知,平面,则必有,矛盾,于是得直线不可能与平面垂直,D不正确.故选:BC11.已知函数的定义域为,函数的图象关于点对称,函数的图象关于直线对称,下列结论正确的有()A. B. C. D.【答案】BCD【解析】【分析】根据给定条件,探讨函数的性质,再逐项判断作答.【详解】函数的定义域为,由函数的图象关于点对称,得的图象关于点对称,则有,取得,B正确;由函数的图象关于直线对称,得,则有,函数的图象关于直线对称,因此,有,C正确;于是得,即,有,取得,D正确;函数的图象关于点对称,且关于直线对称,而,A不正确.故选:BCD12.函数的大于0的零点为,函数的大于1的零点为,下列判断正确的是(提示:)()A. B. C. D.【答案】AC【解析】【分析】根据题意可知,即可计算得出A,B答案.再将计算结果代入化简即可得出C.最后根据单调性即可判断出零点区间.【详解】根据题意可知,即将代入等式,等式成立,故A正确.因,所以,故B错误.,因为,所以,故C正确.在先小于0,后大于0,故在先减后增,,,所以在没有零点,故D错误.故选:AC三、填空题:本题共4小题,每小题5分,共20分.13.展开式中的常数项是______.【答案】【解析】【分析】根据二项式的展开式的通项即得.【详解】由题意的展开式的通项为,令,则,所以的展开式中的常数项为.故答案为:.14.已知圆,直线,若直线截圆所得弦长为2,则______.【答案】【解析】【分析】利用点到直线距离公式和弦长公式即可.【详解】设直线与圆的交点为,圆心到直线的距离为,半径.由题直线截圆所得弦长,所以.因为,所以.故答案为:.15.已知,,且,则的最小值为______.【答案】3【解析】【分析】变形给定等式,再利用“1”的妙用求解作答.【详解】,,由得:,则,当且仅当,即时取等号,所以当时,取得最小值3.故答案为:316.一矩形的一边在轴上,另两个顶点在函数的图像上,如图,则此矩形绕轴旋转而成的几何体的体积的最大值是___________.【答案】【解析】【分析】先利用基本不等式求出的取值范围,再设点,的坐标,由,的纵坐标相同,得到,从而得到,再利用圆柱的体积公式以及基本不等式,即可得到答案.【详解】由,又,则,当且仅当时取等号,∴,且,∵矩形绕轴旋转而成的几何体为圆柱,设,,,,如图所示,则圆柱的底面圆的半径为,高为,且,,∴,即,由,可得,∴,故,∴圆柱的体积为,当且仅当时取等号,∴此矩形绕轴旋转而成的几何体的体积的最大值是.故答案为:.四、解答题.17.已知数列的前项和为,,.(1)证明:为等比数列;(2)求.【答案】(1)证明见解析;(2).【解析】【分析】(1)由递推关系化简,根据等比数列的定义得证;(2)由(1)求出,根据错位相减法求和.【小问1详解】,,即,故为等比数列.【小问2详解】由(1)知,,,,,18.已知的内角,,所对的边分别为,,,记面积为,且满足.(1)求角;(2)若,且,求.【答案】(1)(2)【解析】【分析】(1)利用面积公式和余弦定理求解;(2)利用三角恒等变换公式以及正弦定理求出即可求解.【小问1详解】由题可知,,即,所以,即.【小问2详解】因为,因为,所以又由

即,由正弦定理,所以,所以.19.在图1的直角梯形中,,,,,为的中点,沿将梯形折起,使得,得到如图2的四棱锥.(1)证明:平面平面;(2)在线段上是否存在点,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点F是线段CD中点.【解析】【分析】(1)根据给定的条件,利用线面垂直的判定证得平面,再利用面面垂直的判定推理作答.(2)由(1)的信息,以点E为原点,建立空间直角坐标系,借助空间向量求解判断作答.【小问1详解】由图1知,四边形是正方形,,在四棱锥中,,而,则,又平面,因此平面,而平面,所以平面平面.【小问2详解】假定在线段上存在点满足条件,由(1)知,射线两两垂直,以点E为原点,射线分别为轴非负半轴建立空间直角坐标系,如图,则点,设,有,设平面的一个法向量,则,令,得,显然平面的一个法向量,依题意,解得,即点,点F是线段CD中点,所以在线段上存在点,使得平面与平面所成的锐二面角的余弦值为,点F是线段CD中点.20.甲,乙,丙三人进行相互传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的一人.(1)当传球3次后就停止传球,求球在乙手上次数的分布列与期望;(2)求第次传球后球恰好在甲手上的概率.【答案】(1)分布列见解析;(2)【解析】【分析】(1)列举出经3次传球后的所有可能,再利用古典概率公式计算球在乙手上次数的概率,列出分布列,并求出数学期望即可.(2)记表示次传球后球在甲手中的事件,,利用相互独立事件概率及条件概率探求与的关系,再借助数列求解作答.小问1详解】第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,记球在乙手上次数为,则可能为:0,1,2;;;;的分布列为:012所以.【小问2详解】n次传球后球恰好在甲手中的事件记为,则有,令,则,于是得,因此,,则,而第一次由甲传球后,球不可能在甲手中,即,则有,数列是以为首项,为公比的等比数列,,整理得,所以次传球后球在甲手中的概率是.21.已知椭圆经过点,且离心率为.(1)求椭圆的标准方程;(2)设过点的直线与椭圆交于,两点,设坐标原点为,线段的中点为,求的最大值.【答案】(1)(2)【解析】【分析】(1)由,,又,即可求出椭圆的方程.(2)设,,,利用点差法,把表示为关于的函数,可求最大值.【小问1详解】椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论