2025届江西省九江市九江一中高考仿真卷数学试题含解析_第1页
2025届江西省九江市九江一中高考仿真卷数学试题含解析_第2页
2025届江西省九江市九江一中高考仿真卷数学试题含解析_第3页
2025届江西省九江市九江一中高考仿真卷数学试题含解析_第4页
2025届江西省九江市九江一中高考仿真卷数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省九江市九江一中高考仿真卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则函数的图像可能为()A. B. C. D.2.已知集合,,若,则()A. B. C. D.3.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.25.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.6.已知复数满足(是虚数单位),则=()A. B. C. D.7.设函数,则使得成立的的取值范围是().A. B.C. D.8.若平面向量,满足,则的最大值为()A. B. C. D.9.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.10.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.11.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空题:本题共4小题,每小题5分,共20分。13.若,,则___________.14.设,满足约束条件,若目标函数的最大值为,则的最小值为______.15.已知函数.若在区间上恒成立.则实数的取值范围是__________.16.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.18.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.19.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.20.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.21.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.22.(10分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.2、A【解析】

由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.3、A【解析】

设成立;反之,满足,但,故选A.4、B【解析】

根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.5、D【解析】

首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6、A【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7、B【解析】

由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.8、C【解析】

可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.9、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.10、D【解析】

画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.11、A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.12、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

因为,所以,又,所以,则,所以.14、【解析】

先根据条件画出可行域,设,再利用几何意义求最值,将最大值转化为轴上的截距,只需求出直线,过可行域内的点时取得最大值,从而得到一个关于,的等式,最后利用基本不等式求最小值即可.【详解】解:不等式表示的平面区域如图所示阴影部分,当直线过直线与直线的交点时,目标函数取得最大,即,即,而.故答案为.【点睛】本题主要考查了基本不等式在最值问题中的应用、简单的线性规划,以及利用几何意义求最值,属于基础题.15、【解析】

首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.16、2【解析】

运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】

(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),,由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.18、(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.19、(1);(2)4.【解析】

(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.20、(1)见证明;(2)【解析】

(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.21、(1)答案不唯一,具体见解析(2)【解析】

(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【详解】(1)由得或①当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.②当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化时,,变化情况如下表:10单调递增单调递减∴当时,取得最大值,,∴.∴的取值范围是.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.22、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】

(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论