版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CenterforSecurityandEmergingTechnology|1
Thispaperisthefifthinstallmentinaserieson“AIsafety,”anareaofmachinelearningresearchthataimstoidentifycausesofunintendedbehaviorinmachinelearning
systemsanddeveloptoolstoensurethesesystemsworksafelyandreliably.OtherpapersintheseriesdescribethreecategoriesofAIsafetyissues—problemsof
robustness,assurance,andspecification.Thispaperintroducestheideaofuncertaintyquantification,i.e.,trainingmachinelearningsystemsthat“knowwhattheydon’t
know.”
Introduction
Thelastdecadeofprogressinmachinelearningresearchhasgivenrisetosystems
thataresurprisinglycapablebutalsonotoriouslyunreliable.ThechatbotChatGPT,
developedbyOpenAI,providesagoodillustrationofthistension.Usersinteracting
withthesystemafteritsreleaseinNovember2022quicklyfoundthatwhileitcouldadeptlyfindbugsinprogrammingcodeandauthorSeinfeldscenes,itcouldalsobeconfoundedbysimpletasks.Forexample,onedialogueshowedthebotclaimingthatthefastestmarinemammalwastheperegrinefalcon,thenchangingitsmindtothesailfish,thenbacktothefalcon—despitetheobviousfactthatneitherofthesechoicesisamammal.Thiskindofunevenperformanceischaracteristicofdeeplearning
systems—thetypeofAIsystemsthathaveseenmostprogressinrecentyears—andpresentsasignificantchallengetotheirdeploymentinreal-worldcontexts.
Anintuitivewaytohandlethisproblemistobuildmachinelearningsystemsthat
“knowwhattheydon’tknow”—thatis,systemsthatcanrecognizeandaccountfor
situationswheretheyaremorelikelytomakemistakes.Forinstance,achatbotcoulddisplayaconfidencescorenexttoitsanswers,oranautonomousvehiclecouldsoundanalarmwhenitfindsitselfinascenarioitcannothandle.Thatway,thesystemcouldbeusefulinsituationswhereitperformswell,andharmlessinsituationswhereitdoesnot.ThiscouldbeespeciallyusefulforAIsystemsthatareusedinawiderangeof
settings,suchaslargelanguagemodels(thetechnologythatpowerschatbotslike
ChatGPT),sincethesesystemsareverylikelytoencounterscenariosthatdivergefromwhattheyweretrainedandtestedfor.
Unfortunately,designingmachinelearningsystemsthatcanrecognizetheirlimitsis
morechallengingthanitmayappearatfirstglance.Infact,enablingmachinelearningsystemsto“knowwhattheydon’tknow”—knownintechnicalcirclesas“uncertaintyquantification”—isanopenandwidelystudiedresearchproblemwithinmachine
learning.Thispapergivesanintroductiontohowuncertaintyquantificationworks,whyitisdifficult,andwhattheprospectsareforthefuture.
CenterforSecurityandEmergingTechnology|2
TheChallengeofReliablyQuantifyingUncertainty
Inprinciple,thekindofsystemwewouldliketobuildsoundssimple:amachine
learningmodelthatgenerallymakescorrectpredictions,butthatcanindicatewhenitspredictionsaremorelikelytobeincorrect.Ideally,suchamodelwouldindicatehighlevelsofuncertaintyneithertoooftennortooseldom.Asystemthatconstantly
expressesunder-confidenceinsituationsthatitcouldactuallyhandlewellisnotveryuseful,butifthesystemsometimesdoesnotindicateuncertaintywheninfactitis
abouttofail,thenthisdefeatsthepurposeoftryingtoquantifyuncertaintyinthefirstplace.Expertsusetheideaof“calibration”todescribethedesiredbehaviorhere:thelevelofuncertaintythatamachinelearningmodelassignstoagivenprediction—its“predictiveuncertainty”—shouldbecalibratedtotheprobabilitythatthepredictionisinfactincorrect.
Figure1:CalibrationCurvesDepictingUnder-Confidence,Near-PerfectCalibration,andOver-Confidence
Thefiguresshowunder-confident(left),well-calibrated(center),andover-confident(right)calibrationcurves.Ideally,theconfidenceexpressedbythemodel(onthex-axis)shouldcorrespondtothechancethatthepredictioniscorrect(onthey-axis).Amodelisunder-confidentifitspredictionsaremoreoftencorrectthanitsconfidencelevelswouldimply(perthechartontheleft),whiletheinverseistrueforanover-confidentmodel(ontheright).
Source:CSET.
Forexample,imagineamedicalmachinelearningclassificationsystemthatusesascanofapatient’seyetopredictwhetherthepatienthasaretinaldisease
.1
Ifthesystemiscalibrated,thenitspredictions—typicallyexpressedaspercentages—should
correspondtothetrueproportionofdiseasedretinas.Thatis,itshouldbethecasethat
CenterforSecurityandEmergingTechnology|3
oftheretinaimagespredictedtobeexhibitingsignsofdiseasewitha50%chance,halfareinfactdiseased,orthateightoutoftenretinaimagespredictedtohavean80%
probabilityofexhibitingsignsofdiseaseinfactdo,andsoon.Theclosertheassignedprobabilitiesaretotherealproportionintheevaluationdata,thebettercalibratedthesystemis.Awell-calibratedsystemisusefulbecauseitallowsuserstoaccountfor
howlikelythepredictionistobecorrect.Forexample,adoctorwouldlikelymake
differentdecisionsaboutfurthertestingandtreatmentforapatientwhosescan
indicateda0.1%chanceofdiseaseversusonewhosescanindicateda30%chance—eventhoughneitherscanwouldbeclassifiedaslikelydiseased.
UnderstandingDistributionShift
Buildingasystemthatcanexpresswell-calibratedpredictiveuncertaintyinthe
laboratory—whilenotstraightforward—isachievable.Thechallengeliesincreatingmachinelearningmodelsthatcanreliablyquantifyuncertaintywhensubjectedtothemessinessoftherealworldinwhichtheyaredeployed.
Attherootofthischallengeliesanideacalled“distributionshift.”Thisreferstothewaysinwhichthetypesofdatathatamachinelearningsystemencounters(the“datadistribution”)changefromonesettingtoanother.Forinstance,aself-drivingcar
trainedusingdatafromSanFrancisco’sroadsisunlikelytoencountersnow,soifthesamecarweredeployedinBostonduringthewinter,itwouldencounteradifferentdatadistribution(onethatincludessnowontheroads),makingitmorelikelytofail.
Distributionshiftiseasytodescribeinformally,butverydifficulttodetect,measure,ordefineprecisely.Thisisbecauseitisespeciallydifficulttoforeseeandaccountforallthepossibletypesofdistributionshiftsthatasystemmightencounterinpractice.
Whenaparticularshiftcanbeanticipated—forinstance,iftheengineersthattrainedtheself-drivingcarinSanFranciscowereplanningaBostondeploymentand
consideringweatherdifferences—thenitisrelativelystraightforwardtomanage.Inmostcases,however,itisimpossibletoknowinadvancewhatkindsofunexpectedsituations—whatunknownunknowns—asystemdeployedinthemessyrealworldmayencounter.
Theneedtodealwithdistributionshiftsmakesquantifyinguncertaintydifficult,
similarlytothebroaderproblemofgeneralizationinmodernmachinelearning
systems.Whileitispossibletoevaluateamodel’saccuracyonalimitedsetofdata
pointsinthelab,therearenomathematicalguaranteesthatensurethatamodelwillperformaswellwhendeployed(i.e.,thatwhatthesystemlearnedwill“generalize”
beyonditstrainingdata).Likewise,foruncertaintyquantification,thereisnoguarantee
CenterforSecurityandEmergingTechnology|4
thataseeminglywell-calibratedmodelwillremaincalibratedondatapointsthataremeaningfullydifferentfromthetrainingdata.Butwhilethereisavastamountof
empiricalandtheoreticalliteratureonhowwellmodelsgeneralizetounseen
examples,thereisrelativelylittleworkonmodels’abilitytoreliablyidentifysituationswheretheiruncertaintyshouldbehigh,making“uncertaintygeneralization”oneofthemostimportantandyetrelativelyunderexploredareasofmachinelearningresearch.
AccuratelyCharacterizingUncertainty
Inthemedicalimagingexampleabove,wedescribedhowmachinelearningmodelsusedforclassificationproduceprobabilitiesforeachclass(e.g.,diseasedversusnot
diseased),butsuchprobabilitiesmaynotbesufficientforreliableuncertainty
quantification.Theseprobabilityscoresindicatehowstronglyamodelpredictsthatagiveninputcorrespondstoagivenoutput.Forinstance,animageclassifierforreadingzipcodestakesinanimageofahandwrittendigit,thenassignsascoretoeachofthe
tenpossibleoutputs(correspondingtothedigitintheimagebeinga“0,”“1,”“2,”etc.).Theoutputwiththehighestscoreindicatesthedigitthattheclassifierthinksismostlikelytobeintheimage.
Unfortunately,thesescoresaregenerallynotusefulindicatorsofthemodel’s
uncertainty,fortworeasons.First,theyaretheresultofatrainingprocessthatwas
optimizingforthemodeltoproduceaccurateoutputs,notcalibratedprobabilities
;2
thus,thereisnoparticularreasontobelievethatascoreof99.9%reliablycorrespondstoahigherchancethattheoutputiscorrectthanascoreof95%.Second,systems
designedthiswayhavenowaytoexpress“noneoftheabove”—say,ifthezipcodereaderencounteredabugsplatteredacrossthepage.Themodelismathematicallyforcedtoassignprobabilityscorestotheavailableoutputs,andtoensurethatthosescoressumtoone
.3
Thisnaturallyraisesthequestionofwhyaddinga“noneoftheabove”optionisnotpossible.Thereasonissimple:modelslearnfromdataand,duetothechallengesofdistributionshiftdescribedabove,AIdeveloperstypicallydonothavedatathat
representsthebroadrangeofpossibilitiesthatcouldfitintoa“noneoftheabove”
option.Thismakesitinfeasibletotrainamodelthatcanconsistentlyrecognizeinputsasbeingmeaningfullydifferent.
Tosummarize,thecoreproblemmakinguncertaintyquantificationdifficultisthatinmanyreal-worldsettings,wecannotcleanlyarticulateandprepareforeverytypeofsituationamodelmayneedtobeabletohandle.Theaimistofindawayforthe
systemtoidentifysituationswhenitislikelytofail—butbecauseitisimpossibleto
CenterforSecurityandEmergingTechnology|5
exposethesystemtoeverykindofscenarioinwhichitmightperformpoorly,itis
impossibletoverifyinadvancethatthesystemwillappropriatelyestimateitschancesofperformingwellundernovel,untestedconditions.Inthenextsection,wediscussseveralapproachesthattrytonavigatethisdifficulty.
ExistingApproachestoUncertaintyQuantification
Thekeychallengeofuncertaintyquantificationistodevelopmodelsthatcan
accuratelyandreliablyexpresshowlikelytheirpredictionsaretobecorrect.Awiderangeofapproacheshavebeendevelopedthataimtoachievethisgoal.Some
approachesprimarilytreatuncertaintyquantificationasanengineeringchallengethatcanbeaddressedwithtailoredalgorithmsandmoretrainingdata.Othersseektousemoremathematicallygroundedtechniquesthatcould,intheory,providewatertightguaranteesthatamodelcanquantifyitsownuncertaintywell.Unfortunately,itisnotcurrentlypossibletoproducesuchmathematicalguaranteeswithoutusingunrealisticassumptions.Instead,thebestwecandoisdevelopmodelsthatquantifyuncertaintywelloncarefullydesignedempiricaltests.
Approachestouncertaintyquantificationinmodernmachinelearningfallintofourdifferentcategories:
1.DeterministicMethods
2.ModelEnsembling
3.ConformalPrediction
4.BayesianInference
Eachoftheseapproacheshasdistinctbenefitsanddrawbacks,withsomeproviding
mathematicalguaranteesandothersperformingparticularlywellonempiricaltests.Weelaborateoneachtechniqueintheremainderofthissection.Readersarewelcometoskiptothenextsectionifthesomewhatmoretechnicalmaterialbelowisnotof
interest.
DeterministicMethods
Deterministicmethodsworkbyexplicitlyencouragingthemodeltoexhibithigh
uncertaintyoncertaininputexamplesduringtraining.Forexample,researchersmightstartbytrainingamodelononedataset,thenintroduceadifferentdatasetwiththeexpectationthatthemodelshouldexpresshighuncertaintyonexamplesfromthe
datasetitwasnottrainedon.Usingthisapproachresultsinmodelsthatareveryaccurateondatasimilartowhattheyweretrainedon,andthatindicatehigh
uncertaintyforotherdata
.4
CenterforSecurityandEmergingTechnology|6
However,itisnotclearhowmuchwecanrelyontheseresearchresultsinpractice.
Modelstrainedthiswayareoptimizedtorecognizethatsometypesofinputare
outsidethescopeofwhattheycanhandle.Butbecausetherealworldiscomplexandunpredictable,itisimpossibleforthistrainingtocoverallpossiblewaysinwhichan
inputcouldbeoutofscope.Forexample,evenifwetrainedthemedicalimaging
classifierdescribedabovetohavehighpredictiveuncertaintyonimagesthatexhibit
commonlyknownimagecorruptions,itmaystillfailatdeploymentifthemodelwas
trainedonimagesobtainedinonehospitalwithacertaintypeofequipment,and
deployedinanotherhospitalwithadifferenttypeofequipment.Asaresult,this
approachispronetofailurewhenthemodelisdeployed,andthereisnoknownwaytoguaranteethatthepredictiveuncertaintyestimateswillinfactbereliable.
ModelEnsembling
Modelensemblingisasimplemethodthatcombinesmultipletrainedmodelsand
averagestheirpredictions.Thisapproachoftenimprovespredictiveaccuracycomparedtojustusingasinglemodel.Anensemble’spredictiveuncertaintyisexpressedasthestandarddeviationofthedifferentpredictions,meaningthatifallofthemodelsintheensemblemakesimilarpredictions,thenuncertaintyislow;iftheymakeverydifferentpredictions,uncertaintyishigh.Ensemblemethodsareoftensuccessfulatproviding
goodpredictiveuncertaintyestimatesinpractice,andarethereforeapopular
approach—thoughtheycanbeexpensive,giventhatmultiplemodelsmustbetrained.Theunderlyingmechanismofusingensemblingforuncertaintyquantificationisthat
differentmodelsinanensemblewillbelikelytoagreeoninputexamplessimilartothetrainingdata,butmaydisagreeoninputexamplesmeaningfullydifferentfromthe
trainingdata.Assuch,whenthepredictionsoftheensemblecomponentsdiffer,thiscanbeusedasastand-inforuncertainty
.5
However,thereisnowaytoverifythatthismechanismworksforanygivenensembleandinputexample.Inparticular,itispossiblethatforsomeinputexamples,multiplemodelsintheensemblemayallgivethesameincorrectanswer,whichwouldgiveafalseimpressionofconfidence,anditisimpossibletoensurethatagivenensemble
willprovidereliable,well-calibratedpredictiveuncertaintyestimatesacrosstheboard.Forsomeusecases,thefactthatensemblingtypicallyprovidesfairlygooduncertaintyestimatesmaybesufficienttomakeitworthusing.Butincaseswheretheuserneedstobeabletotrustthatthesystemwillreliablyidentifysituationswhereitislikelytofail,ensemblingshouldnotbeconsideredareliablemethod.
CenterforSecurityandEmergingTechnology|7
ConformalPrediction
Conformalprediction,incontrastwithdeterministicmethodsandensembling,isa
statisticallywell-foundedapproachthatprovidesmathematicalreliabilityguarantees,butreliesonakeyassumption:thatthedatathemodelwillencounteroncedeployedisgeneratedbythesameunderlyingdata-generatingprocessasthetrainingdata(i.e.,thatthereisnodistributionshift).Usingthisassumption,conformalpredictioncan
providemathematicalguaranteesoftheprobabilitythatagivenpredictionrangeincludedthecorrectprediction.Forinstance,inaweatherforecastingsetting,
conformalpredictioncouldguaranteea95%chancethattheday’smaximum
temperaturewillfallwithinacertainrange.(Thatis,itcouldprovideamathematical
guaranteethat95outof100similarpredictionswouldfallwithintherange.
)6
A
predictedrangeof,say,82ºF-88ºFwouldimplymoreuncertaintythanarangeof83ºF-85ºF.
Conformalprediction’smajoradvantageisthatitispossibletomathematicallyguaranteethatitspredictiveuncertaintyestimatesarecorrectundercertain
assumptions.Itsmajordisadvantageisthatthoseassumptions—primarilythatthe
modelwillencountersimilardatawhiledeployedtothedataitwastrainedon—oftendonothold.Worse,itisoftenimpossibletodetectwhentheseassumptionsare
violated,meaningthatthesamekindofchangesininputsthatmaytripup
deterministicmethodsarealsolikelytocauseconformalpredictiontofail.Infact,inalloftheexampleapplicationproblemswheremachinelearningmodelsarepronetofailandforwhichwewouldliketofindapproachestoimprovinguncertaintyquantification,standardassumptionsofconformalpredictionwouldbeviolated.
BayesianInference
Lastly,BayesianuncertaintyquantificationusesBayesianinference,whichprovidesamathematicallyprincipledframeworkforupdatingtheprobabilityofahypothesisas
moreevidenceorinformationbecomesavailable
.7
Bayesianinferencecanbeusedto
trainaneuralnetworkthatrepresentseachparameterinthenetworkasarandom
variable,ratherthanasinglefixedvalue(asistypicallythecase).Whilethisapproachisguaranteedtoprovideanaccuraterepresentationofamodel’spredictiveuncertainty,itiscomputationallyinfeasibletocarryoutexactBayesianinferenceonmodern
machinelearningmodelssuchasneuralnetworks.Instead,thebestresearcherscandoistouseapproximations,meaningthatanyguaranteethatthemodel’suncertaintywillbeaccuratelyrepresentedislost.
CenterforSecurityandEmergingTechnology|8
PracticalConsiderationsinUsingUncertaintyQuantification
Uncertaintyquantificationmethodsformachinelearningareapowerfultoolformakingmodernmachinelearningsystemsmorereliable.Whilenoexistingapproachisasilverbulletandeachapproachhasdistinctpracticalshortcomings,researchhasshownthatmethodsspecificallydesignedtoimprovetheabilityofmodernmachinelearning
systemstoquantifytheiruncertainty—suchastheapproachesdescribedabove—
succeedatdoingsoinmostsettings.Thesemethodsthereforeoftenserveas“add-ons”tostandardtrainingroutines.Theycanbecustom-designedtomeetthespecificchallengesofagivenpredictiontaskordeploymentsettingandcanaddanadditionalsafetylayertodeployedsystems.
Consideringhuman-computerinteractioniscrucialformakingeffectiveuseof
uncertaintyquantificationmethods.Forexample,beingabletointerpretamodel’s
uncertaintyestimates,determiningthelevelofuncertaintyinmachinelearning
systemsthathumanoperatorsarecomfortablewith,andunderstandingwhenandwhyasystem’suncertaintyestimatesmaybeunreliableisextremelyimportantforsafety-criticalapplicationsettings.Choicesaroundthedesignofuserinterfaces,datavisualizations,andusertrainingcanmakeabigdifferenceinhowusefuluncertaintyestimatesareinpractice
.8
Giventhelimitationsofexistingapproachestouncertaintyquantification,itisessentialthattheuseofuncertaintyestimatesdoesnotcreateafalsesenseofconfidence.
Systemsmustbedesignedtoaccountforthefactthatamodeldisplayinghigh
confidencecouldstillbewrongifithasencounteredanunknownunknownthatgoesbeyondwhatitwastrainedandtestedfor.
CenterforSecurityandEmergingTechnology|9
Outlook
Thereisincreasinginterestinhowuncertaintyquantificationcouldbeusedtomitigatetheweaknessesoflargelanguagemodels,suchastheirtendencytohallucinate.Whilemuchpastworkinthespacehasfocusedonimageclassificationorsimpletabular
datasets,someresearchersarebeginningtoexplorewhatitwouldlooklikefor
chatbotsorotherlanguage-basedsystemsto“knowwhattheydon’tknow.
”9
This
researchneedstograpplewithchallengesspecifictolanguagegeneration,suchasthefactthatthereisoftennosinglecorrectanswer.(Forinstance,correctanswerstothequestion:“WhatisthecapitalofFrance?”couldinclude,“Paris,”“It’sParis,”or“The
capitalofFranceisParis,”eachofwhichrequiresthelanguagemodeltomakedifferentpredictionsaboutwhichwordshouldcomenext.)
Duetothefundamentalchallengesofreliablyquantifyinguncertainty,weshouldnotexpectaperfectsolutiontobedevelopedforlanguagegenerationoranyothertypeofmachinelearning.Justaswiththebroaderchallengeofbuildingmachinelearning
systemsthatcangeneralizetonewcontexts,thepossibilityofdistributionshiftmeansthatwemayneverbeabletobuildAIsystemsthat“knowwhattheydon’tknow”withcompletecertainty.
Nonetheless,researchintoreliableuncertaintyquantificationinchallengingdomains—suchascomputervisionorreinforcementlearning—hasmadegreatstridesin
improvingthereliabilityandrobustnessofmodernmachinelearningsystemsoverthepastfewyearsandwillplayacrucialroleinimprovingthesafety,reliability,and
interpretabilityoflargelanguagemodelsinthenearfuture.Overtime,uncertainty
quantificationinmachinelearningsystemsislikelytomovefrombeinganareaofbasicresearchtoapracticalengineeringchallengethatcanbeapproachedwiththedifferentparadigmsandmethodsdescribedinthispaper.
CenterforSecurityandEmergingTechnology|10
Authors
TimG.J.Rudnerisanon-residentAI/MLfellowwithCSETandafacultyfellowatNewYorkUniversity.
HelenToneristhedirectorofstrategyandfoundationalresearchgrantsatCSET.
Acknowledgments
Forfeedbackandassistance,wearegratefultoAlexEngler,HeatherFrase,MargaritaKonaev,LarryLewis,EmeliaProbasco,andThomasWoodside.
©2024bytheCenterforSecurityandEmergingTechnology.ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial4.0InternationalLicense.
Toviewacopyofthislicense,visit
/licenses/by-nc/4.0/.
DocumentIdentifier:doi:10.51593/20220013
CenterforSecurityandEmergingTechnology|11
Endnotes
1NeilBandetal.,BenchmarkingBayesianDeepLearningonDiabeticRetinopathyDetectionTasks,AdvancesinNeuralInformationProcessingSystems,2021,
/forum?id=jyd4Lyjr2iB.
2Wenotethat,technically,modelsaretrainedtoachieveahighcross-entropybetweenthedatalabelsandthepredictedprobabilities.Thismetricdoesdiscouragethemodel—tosomeextent—frombeingconfidentandwrongonthetrainingdatabutdoesnotnecessarilyleadtowell-calibratedpredictions.
3Forsimplicity,weonlydiscussclassificationproblems,whereamodelpredictsclassprobabilitiesthatmakeiteasytocomputethecalibrationofapredictivemodel.
4See,forexample,thispaperonpredictingretinaldisease(includingTable4onexpectedcalibration
error):JoostvanAmersfoort,LewisSmith,YeeWhyeTeh,andYarinGal,“UncertaintyEstimat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国卫生制品行业投资前景及策略咨询研究报告
- 2024至2030年商务车脚垫项目投资价值分析报告
- 2024年中国鸡蛋糕油香精市场调查研究报告
- 2024年中国防虫王市场调查研究报告
- 2024年钢栓项目可行性研究报告
- 2024年起动机电磁吸力开关项目可行性研究报告
- 2024年港式单眼矮仔炉项目可行性研究报告
- 2024年中国薄膜电容器分选机市场调查研究报告
- 2024年中国缝合钉市场调查研究报告
- 2024年中国管制瓶内压力极限检测仪市场调查研究报告
- 玻璃镶嵌工艺名称图片
- 化成处理工艺课件
- 2024中考语文《水浒传》历年真题(解析版)
- 机械制造及自动化大专生职业生涯发展展示
- 非标自动化设备开发流程课件
- 应化12级化学反应过程与设备课程标准
- 摩擦材料生产加工项目环评可研资料环境影响
- 国有资产管理培训课件资料
- 锂电池电池组技术方案
- 量子机器学习及区块链技术导论
- 承包土地种植艾草计划书
评论
0/150
提交评论