版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CenterforSecurityandEmergingTechnology|1
Thispaperisthefifthinstallmentinaserieson“AIsafety,”anareaofmachinelearningresearchthataimstoidentifycausesofunintendedbehaviorinmachinelearning
systemsanddeveloptoolstoensurethesesystemsworksafelyandreliably.OtherpapersintheseriesdescribethreecategoriesofAIsafetyissues—problemsof
robustness,assurance,andspecification.Thispaperintroducestheideaofuncertaintyquantification,i.e.,trainingmachinelearningsystemsthat“knowwhattheydon’t
know.”
Introduction
Thelastdecadeofprogressinmachinelearningresearchhasgivenrisetosystems
thataresurprisinglycapablebutalsonotoriouslyunreliable.ThechatbotChatGPT,
developedbyOpenAI,providesagoodillustrationofthistension.Usersinteracting
withthesystemafteritsreleaseinNovember2022quicklyfoundthatwhileitcouldadeptlyfindbugsinprogrammingcodeandauthorSeinfeldscenes,itcouldalsobeconfoundedbysimpletasks.Forexample,onedialogueshowedthebotclaimingthatthefastestmarinemammalwastheperegrinefalcon,thenchangingitsmindtothesailfish,thenbacktothefalcon—despitetheobviousfactthatneitherofthesechoicesisamammal.Thiskindofunevenperformanceischaracteristicofdeeplearning
systems—thetypeofAIsystemsthathaveseenmostprogressinrecentyears—andpresentsasignificantchallengetotheirdeploymentinreal-worldcontexts.
Anintuitivewaytohandlethisproblemistobuildmachinelearningsystemsthat
“knowwhattheydon’tknow”—thatis,systemsthatcanrecognizeandaccountfor
situationswheretheyaremorelikelytomakemistakes.Forinstance,achatbotcoulddisplayaconfidencescorenexttoitsanswers,oranautonomousvehiclecouldsoundanalarmwhenitfindsitselfinascenarioitcannothandle.Thatway,thesystemcouldbeusefulinsituationswhereitperformswell,andharmlessinsituationswhereitdoesnot.ThiscouldbeespeciallyusefulforAIsystemsthatareusedinawiderangeof
settings,suchaslargelanguagemodels(thetechnologythatpowerschatbotslike
ChatGPT),sincethesesystemsareverylikelytoencounterscenariosthatdivergefromwhattheyweretrainedandtestedfor.
Unfortunately,designingmachinelearningsystemsthatcanrecognizetheirlimitsis
morechallengingthanitmayappearatfirstglance.Infact,enablingmachinelearningsystemsto“knowwhattheydon’tknow”—knownintechnicalcirclesas“uncertaintyquantification”—isanopenandwidelystudiedresearchproblemwithinmachine
learning.Thispapergivesanintroductiontohowuncertaintyquantificationworks,whyitisdifficult,andwhattheprospectsareforthefuture.
CenterforSecurityandEmergingTechnology|2
TheChallengeofReliablyQuantifyingUncertainty
Inprinciple,thekindofsystemwewouldliketobuildsoundssimple:amachine
learningmodelthatgenerallymakescorrectpredictions,butthatcanindicatewhenitspredictionsaremorelikelytobeincorrect.Ideally,suchamodelwouldindicatehighlevelsofuncertaintyneithertoooftennortooseldom.Asystemthatconstantly
expressesunder-confidenceinsituationsthatitcouldactuallyhandlewellisnotveryuseful,butifthesystemsometimesdoesnotindicateuncertaintywheninfactitis
abouttofail,thenthisdefeatsthepurposeoftryingtoquantifyuncertaintyinthefirstplace.Expertsusetheideaof“calibration”todescribethedesiredbehaviorhere:thelevelofuncertaintythatamachinelearningmodelassignstoagivenprediction—its“predictiveuncertainty”—shouldbecalibratedtotheprobabilitythatthepredictionisinfactincorrect.
Figure1:CalibrationCurvesDepictingUnder-Confidence,Near-PerfectCalibration,andOver-Confidence
Thefiguresshowunder-confident(left),well-calibrated(center),andover-confident(right)calibrationcurves.Ideally,theconfidenceexpressedbythemodel(onthex-axis)shouldcorrespondtothechancethatthepredictioniscorrect(onthey-axis).Amodelisunder-confidentifitspredictionsaremoreoftencorrectthanitsconfidencelevelswouldimply(perthechartontheleft),whiletheinverseistrueforanover-confidentmodel(ontheright).
Source:CSET.
Forexample,imagineamedicalmachinelearningclassificationsystemthatusesascanofapatient’seyetopredictwhetherthepatienthasaretinaldisease
.1
Ifthesystemiscalibrated,thenitspredictions—typicallyexpressedaspercentages—should
correspondtothetrueproportionofdiseasedretinas.Thatis,itshouldbethecasethat
CenterforSecurityandEmergingTechnology|3
oftheretinaimagespredictedtobeexhibitingsignsofdiseasewitha50%chance,halfareinfactdiseased,orthateightoutoftenretinaimagespredictedtohavean80%
probabilityofexhibitingsignsofdiseaseinfactdo,andsoon.Theclosertheassignedprobabilitiesaretotherealproportionintheevaluationdata,thebettercalibratedthesystemis.Awell-calibratedsystemisusefulbecauseitallowsuserstoaccountfor
howlikelythepredictionistobecorrect.Forexample,adoctorwouldlikelymake
differentdecisionsaboutfurthertestingandtreatmentforapatientwhosescan
indicateda0.1%chanceofdiseaseversusonewhosescanindicateda30%chance—eventhoughneitherscanwouldbeclassifiedaslikelydiseased.
UnderstandingDistributionShift
Buildingasystemthatcanexpresswell-calibratedpredictiveuncertaintyinthe
laboratory—whilenotstraightforward—isachievable.Thechallengeliesincreatingmachinelearningmodelsthatcanreliablyquantifyuncertaintywhensubjectedtothemessinessoftherealworldinwhichtheyaredeployed.
Attherootofthischallengeliesanideacalled“distributionshift.”Thisreferstothewaysinwhichthetypesofdatathatamachinelearningsystemencounters(the“datadistribution”)changefromonesettingtoanother.Forinstance,aself-drivingcar
trainedusingdatafromSanFrancisco’sroadsisunlikelytoencountersnow,soifthesamecarweredeployedinBostonduringthewinter,itwouldencounteradifferentdatadistribution(onethatincludessnowontheroads),makingitmorelikelytofail.
Distributionshiftiseasytodescribeinformally,butverydifficulttodetect,measure,ordefineprecisely.Thisisbecauseitisespeciallydifficulttoforeseeandaccountforallthepossibletypesofdistributionshiftsthatasystemmightencounterinpractice.
Whenaparticularshiftcanbeanticipated—forinstance,iftheengineersthattrainedtheself-drivingcarinSanFranciscowereplanningaBostondeploymentand
consideringweatherdifferences—thenitisrelativelystraightforwardtomanage.Inmostcases,however,itisimpossibletoknowinadvancewhatkindsofunexpectedsituations—whatunknownunknowns—asystemdeployedinthemessyrealworldmayencounter.
Theneedtodealwithdistributionshiftsmakesquantifyinguncertaintydifficult,
similarlytothebroaderproblemofgeneralizationinmodernmachinelearning
systems.Whileitispossibletoevaluateamodel’saccuracyonalimitedsetofdata
pointsinthelab,therearenomathematicalguaranteesthatensurethatamodelwillperformaswellwhendeployed(i.e.,thatwhatthesystemlearnedwill“generalize”
beyonditstrainingdata).Likewise,foruncertaintyquantification,thereisnoguarantee
CenterforSecurityandEmergingTechnology|4
thataseeminglywell-calibratedmodelwillremaincalibratedondatapointsthataremeaningfullydifferentfromthetrainingdata.Butwhilethereisavastamountof
empiricalandtheoreticalliteratureonhowwellmodelsgeneralizetounseen
examples,thereisrelativelylittleworkonmodels’abilitytoreliablyidentifysituationswheretheiruncertaintyshouldbehigh,making“uncertaintygeneralization”oneofthemostimportantandyetrelativelyunderexploredareasofmachinelearningresearch.
AccuratelyCharacterizingUncertainty
Inthemedicalimagingexampleabove,wedescribedhowmachinelearningmodelsusedforclassificationproduceprobabilitiesforeachclass(e.g.,diseasedversusnot
diseased),butsuchprobabilitiesmaynotbesufficientforreliableuncertainty
quantification.Theseprobabilityscoresindicatehowstronglyamodelpredictsthatagiveninputcorrespondstoagivenoutput.Forinstance,animageclassifierforreadingzipcodestakesinanimageofahandwrittendigit,thenassignsascoretoeachofthe
tenpossibleoutputs(correspondingtothedigitintheimagebeinga“0,”“1,”“2,”etc.).Theoutputwiththehighestscoreindicatesthedigitthattheclassifierthinksismostlikelytobeintheimage.
Unfortunately,thesescoresaregenerallynotusefulindicatorsofthemodel’s
uncertainty,fortworeasons.First,theyaretheresultofatrainingprocessthatwas
optimizingforthemodeltoproduceaccurateoutputs,notcalibratedprobabilities
;2
thus,thereisnoparticularreasontobelievethatascoreof99.9%reliablycorrespondstoahigherchancethattheoutputiscorrectthanascoreof95%.Second,systems
designedthiswayhavenowaytoexpress“noneoftheabove”—say,ifthezipcodereaderencounteredabugsplatteredacrossthepage.Themodelismathematicallyforcedtoassignprobabilityscorestotheavailableoutputs,andtoensurethatthosescoressumtoone
.3
Thisnaturallyraisesthequestionofwhyaddinga“noneoftheabove”optionisnotpossible.Thereasonissimple:modelslearnfromdataand,duetothechallengesofdistributionshiftdescribedabove,AIdeveloperstypicallydonothavedatathat
representsthebroadrangeofpossibilitiesthatcouldfitintoa“noneoftheabove”
option.Thismakesitinfeasibletotrainamodelthatcanconsistentlyrecognizeinputsasbeingmeaningfullydifferent.
Tosummarize,thecoreproblemmakinguncertaintyquantificationdifficultisthatinmanyreal-worldsettings,wecannotcleanlyarticulateandprepareforeverytypeofsituationamodelmayneedtobeabletohandle.Theaimistofindawayforthe
systemtoidentifysituationswhenitislikelytofail—butbecauseitisimpossibleto
CenterforSecurityandEmergingTechnology|5
exposethesystemtoeverykindofscenarioinwhichitmightperformpoorly,itis
impossibletoverifyinadvancethatthesystemwillappropriatelyestimateitschancesofperformingwellundernovel,untestedconditions.Inthenextsection,wediscussseveralapproachesthattrytonavigatethisdifficulty.
ExistingApproachestoUncertaintyQuantification
Thekeychallengeofuncertaintyquantificationistodevelopmodelsthatcan
accuratelyandreliablyexpresshowlikelytheirpredictionsaretobecorrect.Awiderangeofapproacheshavebeendevelopedthataimtoachievethisgoal.Some
approachesprimarilytreatuncertaintyquantificationasanengineeringchallengethatcanbeaddressedwithtailoredalgorithmsandmoretrainingdata.Othersseektousemoremathematicallygroundedtechniquesthatcould,intheory,providewatertightguaranteesthatamodelcanquantifyitsownuncertaintywell.Unfortunately,itisnotcurrentlypossibletoproducesuchmathematicalguaranteeswithoutusingunrealisticassumptions.Instead,thebestwecandoisdevelopmodelsthatquantifyuncertaintywelloncarefullydesignedempiricaltests.
Approachestouncertaintyquantificationinmodernmachinelearningfallintofourdifferentcategories:
1.DeterministicMethods
2.ModelEnsembling
3.ConformalPrediction
4.BayesianInference
Eachoftheseapproacheshasdistinctbenefitsanddrawbacks,withsomeproviding
mathematicalguaranteesandothersperformingparticularlywellonempiricaltests.Weelaborateoneachtechniqueintheremainderofthissection.Readersarewelcometoskiptothenextsectionifthesomewhatmoretechnicalmaterialbelowisnotof
interest.
DeterministicMethods
Deterministicmethodsworkbyexplicitlyencouragingthemodeltoexhibithigh
uncertaintyoncertaininputexamplesduringtraining.Forexample,researchersmightstartbytrainingamodelononedataset,thenintroduceadifferentdatasetwiththeexpectationthatthemodelshouldexpresshighuncertaintyonexamplesfromthe
datasetitwasnottrainedon.Usingthisapproachresultsinmodelsthatareveryaccurateondatasimilartowhattheyweretrainedon,andthatindicatehigh
uncertaintyforotherdata
.4
CenterforSecurityandEmergingTechnology|6
However,itisnotclearhowmuchwecanrelyontheseresearchresultsinpractice.
Modelstrainedthiswayareoptimizedtorecognizethatsometypesofinputare
outsidethescopeofwhattheycanhandle.Butbecausetherealworldiscomplexandunpredictable,itisimpossibleforthistrainingtocoverallpossiblewaysinwhichan
inputcouldbeoutofscope.Forexample,evenifwetrainedthemedicalimaging
classifierdescribedabovetohavehighpredictiveuncertaintyonimagesthatexhibit
commonlyknownimagecorruptions,itmaystillfailatdeploymentifthemodelwas
trainedonimagesobtainedinonehospitalwithacertaintypeofequipment,and
deployedinanotherhospitalwithadifferenttypeofequipment.Asaresult,this
approachispronetofailurewhenthemodelisdeployed,andthereisnoknownwaytoguaranteethatthepredictiveuncertaintyestimateswillinfactbereliable.
ModelEnsembling
Modelensemblingisasimplemethodthatcombinesmultipletrainedmodelsand
averagestheirpredictions.Thisapproachoftenimprovespredictiveaccuracycomparedtojustusingasinglemodel.Anensemble’spredictiveuncertaintyisexpressedasthestandarddeviationofthedifferentpredictions,meaningthatifallofthemodelsintheensemblemakesimilarpredictions,thenuncertaintyislow;iftheymakeverydifferentpredictions,uncertaintyishigh.Ensemblemethodsareoftensuccessfulatproviding
goodpredictiveuncertaintyestimatesinpractice,andarethereforeapopular
approach—thoughtheycanbeexpensive,giventhatmultiplemodelsmustbetrained.Theunderlyingmechanismofusingensemblingforuncertaintyquantificationisthat
differentmodelsinanensemblewillbelikelytoagreeoninputexamplessimilartothetrainingdata,butmaydisagreeoninputexamplesmeaningfullydifferentfromthe
trainingdata.Assuch,whenthepredictionsoftheensemblecomponentsdiffer,thiscanbeusedasastand-inforuncertainty
.5
However,thereisnowaytoverifythatthismechanismworksforanygivenensembleandinputexample.Inparticular,itispossiblethatforsomeinputexamples,multiplemodelsintheensemblemayallgivethesameincorrectanswer,whichwouldgiveafalseimpressionofconfidence,anditisimpossibletoensurethatagivenensemble
willprovidereliable,well-calibratedpredictiveuncertaintyestimatesacrosstheboard.Forsomeusecases,thefactthatensemblingtypicallyprovidesfairlygooduncertaintyestimatesmaybesufficienttomakeitworthusing.Butincaseswheretheuserneedstobeabletotrustthatthesystemwillreliablyidentifysituationswhereitislikelytofail,ensemblingshouldnotbeconsideredareliablemethod.
CenterforSecurityandEmergingTechnology|7
ConformalPrediction
Conformalprediction,incontrastwithdeterministicmethodsandensembling,isa
statisticallywell-foundedapproachthatprovidesmathematicalreliabilityguarantees,butreliesonakeyassumption:thatthedatathemodelwillencounteroncedeployedisgeneratedbythesameunderlyingdata-generatingprocessasthetrainingdata(i.e.,thatthereisnodistributionshift).Usingthisassumption,conformalpredictioncan
providemathematicalguaranteesoftheprobabilitythatagivenpredictionrangeincludedthecorrectprediction.Forinstance,inaweatherforecastingsetting,
conformalpredictioncouldguaranteea95%chancethattheday’smaximum
temperaturewillfallwithinacertainrange.(Thatis,itcouldprovideamathematical
guaranteethat95outof100similarpredictionswouldfallwithintherange.
)6
A
predictedrangeof,say,82ºF-88ºFwouldimplymoreuncertaintythanarangeof83ºF-85ºF.
Conformalprediction’smajoradvantageisthatitispossibletomathematicallyguaranteethatitspredictiveuncertaintyestimatesarecorrectundercertain
assumptions.Itsmajordisadvantageisthatthoseassumptions—primarilythatthe
modelwillencountersimilardatawhiledeployedtothedataitwastrainedon—oftendonothold.Worse,itisoftenimpossibletodetectwhentheseassumptionsare
violated,meaningthatthesamekindofchangesininputsthatmaytripup
deterministicmethodsarealsolikelytocauseconformalpredictiontofail.Infact,inalloftheexampleapplicationproblemswheremachinelearningmodelsarepronetofailandforwhichwewouldliketofindapproachestoimprovinguncertaintyquantification,standardassumptionsofconformalpredictionwouldbeviolated.
BayesianInference
Lastly,BayesianuncertaintyquantificationusesBayesianinference,whichprovidesamathematicallyprincipledframeworkforupdatingtheprobabilityofahypothesisas
moreevidenceorinformationbecomesavailable
.7
Bayesianinferencecanbeusedto
trainaneuralnetworkthatrepresentseachparameterinthenetworkasarandom
variable,ratherthanasinglefixedvalue(asistypicallythecase).Whilethisapproachisguaranteedtoprovideanaccuraterepresentationofamodel’spredictiveuncertainty,itiscomputationallyinfeasibletocarryoutexactBayesianinferenceonmodern
machinelearningmodelssuchasneuralnetworks.Instead,thebestresearcherscandoistouseapproximations,meaningthatanyguaranteethatthemodel’suncertaintywillbeaccuratelyrepresentedislost.
CenterforSecurityandEmergingTechnology|8
PracticalConsiderationsinUsingUncertaintyQuantification
Uncertaintyquantificationmethodsformachinelearningareapowerfultoolformakingmodernmachinelearningsystemsmorereliable.Whilenoexistingapproachisasilverbulletandeachapproachhasdistinctpracticalshortcomings,researchhasshownthatmethodsspecificallydesignedtoimprovetheabilityofmodernmachinelearning
systemstoquantifytheiruncertainty—suchastheapproachesdescribedabove—
succeedatdoingsoinmostsettings.Thesemethodsthereforeoftenserveas“add-ons”tostandardtrainingroutines.Theycanbecustom-designedtomeetthespecificchallengesofagivenpredictiontaskordeploymentsettingandcanaddanadditionalsafetylayertodeployedsystems.
Consideringhuman-computerinteractioniscrucialformakingeffectiveuseof
uncertaintyquantificationmethods.Forexample,beingabletointerpretamodel’s
uncertaintyestimates,determiningthelevelofuncertaintyinmachinelearning
systemsthathumanoperatorsarecomfortablewith,andunderstandingwhenandwhyasystem’suncertaintyestimatesmaybeunreliableisextremelyimportantforsafety-criticalapplicationsettings.Choicesaroundthedesignofuserinterfaces,datavisualizations,andusertrainingcanmakeabigdifferenceinhowusefuluncertaintyestimatesareinpractice
.8
Giventhelimitationsofexistingapproachestouncertaintyquantification,itisessentialthattheuseofuncertaintyestimatesdoesnotcreateafalsesenseofconfidence.
Systemsmustbedesignedtoaccountforthefactthatamodeldisplayinghigh
confidencecouldstillbewrongifithasencounteredanunknownunknownthatgoesbeyondwhatitwastrainedandtestedfor.
CenterforSecurityandEmergingTechnology|9
Outlook
Thereisincreasinginterestinhowuncertaintyquantificationcouldbeusedtomitigatetheweaknessesoflargelanguagemodels,suchastheirtendencytohallucinate.Whilemuchpastworkinthespacehasfocusedonimageclassificationorsimpletabular
datasets,someresearchersarebeginningtoexplorewhatitwouldlooklikefor
chatbotsorotherlanguage-basedsystemsto“knowwhattheydon’tknow.
”9
This
researchneedstograpplewithchallengesspecifictolanguagegeneration,suchasthefactthatthereisoftennosinglecorrectanswer.(Forinstance,correctanswerstothequestion:“WhatisthecapitalofFrance?”couldinclude,“Paris,”“It’sParis,”or“The
capitalofFranceisParis,”eachofwhichrequiresthelanguagemodeltomakedifferentpredictionsaboutwhichwordshouldcomenext.)
Duetothefundamentalchallengesofreliablyquantifyinguncertainty,weshouldnotexpectaperfectsolutiontobedevelopedforlanguagegenerationoranyothertypeofmachinelearning.Justaswiththebroaderchallengeofbuildingmachinelearning
systemsthatcangeneralizetonewcontexts,thepossibilityofdistributionshiftmeansthatwemayneverbeabletobuildAIsystemsthat“knowwhattheydon’tknow”withcompletecertainty.
Nonetheless,researchintoreliableuncertaintyquantificationinchallengingdomains—suchascomputervisionorreinforcementlearning—hasmadegreatstridesin
improvingthereliabilityandrobustnessofmodernmachinelearningsystemsoverthepastfewyearsandwillplayacrucialroleinimprovingthesafety,reliability,and
interpretabilityoflargelanguagemodelsinthenearfuture.Overtime,uncertainty
quantificationinmachinelearningsystemsislikelytomovefrombeinganareaofbasicresearchtoapracticalengineeringchallengethatcanbeapproachedwiththedifferentparadigmsandmethodsdescribedinthispaper.
CenterforSecurityandEmergingTechnology|10
Authors
TimG.J.Rudnerisanon-residentAI/MLfellowwithCSETandafacultyfellowatNewYorkUniversity.
HelenToneristhedirectorofstrategyandfoundationalresearchgrantsatCSET.
Acknowledgments
Forfeedbackandassistance,wearegratefultoAlexEngler,HeatherFrase,MargaritaKonaev,LarryLewis,EmeliaProbasco,andThomasWoodside.
©2024bytheCenterforSecurityandEmergingTechnology.ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial4.0InternationalLicense.
Toviewacopyofthislicense,visit
/licenses/by-nc/4.0/.
DocumentIdentifier:doi:10.51593/20220013
CenterforSecurityandEmergingTechnology|11
Endnotes
1NeilBandetal.,BenchmarkingBayesianDeepLearningonDiabeticRetinopathyDetectionTasks,AdvancesinNeuralInformationProcessingSystems,2021,
/forum?id=jyd4Lyjr2iB.
2Wenotethat,technically,modelsaretrainedtoachieveahighcross-entropybetweenthedatalabelsandthepredictedprobabilities.Thismetricdoesdiscouragethemodel—tosomeextent—frombeingconfidentandwrongonthetrainingdatabutdoesnotnecessarilyleadtowell-calibratedpredictions.
3Forsimplicity,weonlydiscussclassificationproblems,whereamodelpredictsclassprobabilitiesthatmakeiteasytocomputethecalibrationofapredictivemodel.
4See,forexample,thispaperonpredictingretinaldisease(includingTable4onexpectedcalibration
error):JoostvanAmersfoort,LewisSmith,YeeWhyeTeh,andYarinGal,“UncertaintyEstimat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年采购供应协议
- 职业学院双师素质认定办法
- 2024年艺术品交易标准字画买卖协议版
- 2024年视频监控软件OEM合作开发协议3篇
- 2024年高品质烟草产品采购与销售合同一
- 2024年高端制造行业技术转让合同
- 2024年物流仓储租赁及冷链配送合同3篇
- 九年级下册unit3Lesson13Be-Careful-Danny教学设计模板
- 广州市加强知识产权运用和保护促进创新驱动发展的实施方案
- 智慧煤矿与智能化开采技术的发展方向
- 2024-2025学年三年级上册数学苏教版学考名师卷期末数学试卷
- 可爱的企鹅(教案)-2024-2025学年一年级上册数学北师大版
- 2023年航天器热控系统行业分析报告及未来五至十年行业发展报告
- 2024年国家公务员考试公共法律知识考试题库及答案(共530题)
- 关于提升高寒缺氧气候条件下队伍综合救援水平的思考
- 2024年秋一年级上册4日月山川 公开课一等奖创新教学设计
- 人教版英语2024年初中中考考纲单词表(整合版)
- 《安全记心中平安伴我行》课件2024年五一假期安全教育主题班会
- 2024年四川省成都市锦江区中考数学一诊试卷(附答案解析)
- 小学生中医药文化知识科普传承中医文化弘扬国粹精神课件
- 形象权授权协议
评论
0/150
提交评论