版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省宁远、江华两县2025届高三第六次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为A. B. C. D.2.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A. B. C. D.3.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.4.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.5.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降6.在中,,则=()A. B.C. D.7.设i为虚数单位,若复数,则复数z等于()A. B. C. D.08.已知,若方程有唯一解,则实数的取值范围是()A. B.C. D.9.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值10.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.设函数恰有两个极值点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则.14.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.15.若函数为奇函数,则_______.16.已知是等比数列,且,,则__________,的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,.求矩阵;求矩阵的特征值.18.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.19.(12分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.(1)求曲线的标准方程;(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.20.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.21.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.22.(10分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2、A【解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.3、B【解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.4、A【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.
故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.5、D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.6、B【解析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.7、B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.8、B【解析】
求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.【详解】解:令,则,则,故,如图示:由,得,函数恒过,,由,,可得,,,若方程有唯一解,则或,即或;当即图象相切时,根据,,解得舍去),则的范围是,故选:.【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.9、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.10、B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。11、A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.12、C【解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.14、【解析】
根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.【详解】∵在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,∴与相似∴,即,过作于,设,,∴,化简得:,,根据函数单调性判断,时,取得最大值36,,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.15、-2【解析】
由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.16、5【解析】,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;,.【解析】
由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【详解】设矩阵,则,所以,解得,,,,所以矩阵;矩阵的特征多项式为,令,解得,,即矩阵的两个特征值为,.【点睛】本题考查矩阵的知识点,属于常考题.18、.【解析】试题分析:,所以.试题解析:B.因为,所以.19、见解析【解析】
(1)设,则点到轴的距离为,因为圆被轴截得的弦长为,所以,又,所以,化简可得,所以曲线的标准方程为.(2)设,,因为直线的斜率,所以可设直线的方程为,由及,消去可得,所以,,所以.设线段的中点为,点的纵坐标为,则,,所以直线的斜率为,所以,所以,所以.易得圆心到直线的距离,由圆经过点,可得,所以,整理可得,解得或,所以或,又,所以.20、(1).(2)见解析【解析】
(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1)∵,∴当时,,解得.(2)∵,∴,∴,当且仅当,即,时,等号成立.∴.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.21、(1)证明见解析;(2)60°.【解析】试题分析:(1)连结PD,由题意可得,则AB⊥平面PDE,;(2)法一:结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为;法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量.平面PAB的法向量为.据此计算可得二面角的大小为.试题解析:(1)连结PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.则DEPD,又EDAB,PD平面AB=D,DE平面PAB,过D做DF垂直PB与F,连接EF,则EFPB,∠DFE为所求二面角的平面角,则:DE=,DF=,则,故二面角的大小为法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如图,以D为原点建立空间直角坐标系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).设平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量为.设二面角的大小为,由图知,,所以即二面角的大小为.22、;.【解析】
连接,由三角形相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版:新能源汽车充电设施建设合同
- 中国劳动关系学院《全球水与能量循环》2023-2024学年第一学期期末试卷
- 浙江长征职业技术学院《综合俄语Ⅲ》2023-2024学年第一学期期末试卷
- 2024年门头更新改造制作安装协议3篇
- 2025年度新型商业综合体场铺面租赁合同2篇
- 2024年环保设施安装与运营合同
- 餐饮行业销售工作总结
- 环保实践教学模板
- 健身房服务员工作感悟
- 手工行业安全生产规范
- 快递驿站承包协议书
- 内科护理学智慧树知到期末考试答案章节答案2024年荆门职业学院
- (高清版)JTGT 5190-2019 农村公路养护技术规范
- 基于视觉果蔬识别的称重系统设计
- 体育初中学生学情分析总结报告
- 2024氢气长管拖车安全使用技术规范
- 部编版语文中考必背文言文7-9年级
- 《中外历史纲要(上)》期末专题复习提纲
- TCALC 003-2023 手术室患者人文关怀管理规范
- 初中学生交通安全教育教案
- 国家职业技术技能标准 4-04-04-02 网络与信息安全管理员(数据安全管理员)S 2024年版
评论
0/150
提交评论