2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷含解析_第1页
2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷含解析_第2页
2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷含解析_第3页
2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷含解析_第4页
2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省济南市济钢高级中学高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.2.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.3.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.4.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是()A. B. C. D.5.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点6.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为()A. B. C. D.7.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.8.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.49.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为10.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.11.函数(或)的图象大致是()A. B. C. D.12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示梯子结构的点数依次构成数列,则________.14.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.15.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.16.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.18.(12分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:①;②.19.(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.20.(12分)如图中,为的中点,,,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.22.(10分)已知等差数列的公差,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

列出循环的每一步,由此可得出输出的值.【详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.2、A【解析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.3、C【解析】

将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.4、B【解析】

试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.5、A【解析】

根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.6、B【解析】

由三视图可知,该三棱锥如图,其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积;考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.7、C【解析】

设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.8、C【解析】

根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.9、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.10、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.11、A【解析】

确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.12、C【解析】

由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.14、1【解析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15、【解析】

设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.16、【解析】

从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于或或解得,所以原不等式的解集为;(2)当时,不等式,即,所以在上有解即在上有解,所以,.【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.18、(1)(2)①证明见解析②证明见解析【解析】

(1)首先根据直线关于直线对称的直线的求法,求得的方程及其斜率.根据函数在处的切线与垂直列方程,解方程求得的值.(2)①构造函数,利用的导函数证得当时,,由此证得.②由①知成立,整理得成立.利用构造函数法证得,由此得到,即,化简后得到.【详解】(1)由解得必过与的交点.在上取点,易得点关于对称的点为,即为直线,所以的方程为,即,其斜率为.又因为,所以,,由题意,解得.(2)因为,所以.①令,则,则,且,,时,,单调递减;时,,单调递增.因为,所以,因为,所以存在,使时,,单调递增;时,,单调递减;时,,单调递增.又,所以时,,即,所以,即成立.②由①知成立,即有成立.令,即.所以时,,单调递增;时,,单调递减,所以,即,因为,所以,所以时,,即时,.【点睛】本小题考查函数图象的对称性,利用导数求切线的斜率,利用导数证明不等式等基础知识;考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想,数形结合思想和应用意识.19、(1)(2)【解析】

(1)通过讨论的范围,得到关于的不等式组,解出取并集即可.(2)去绝对值将函数写成分段函数形式讨论分段函数的单调性由恒成立求得结果.【详解】解:(1)当时,,即或或解之得或,即不等式的解集为.(2)由题意得:当时为减函数,显然恒成立.当时,为增函数,,当时,为减函数,综上所述:使恒成立的的取值范围为.【点睛】本题考查了解绝对值不等式问题,考查不等式恒成立问题中求解参数问题,考查分类讨论思想,转化思想,属于中档题.20、(1)10;(2).【解析】

(1)由题意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,进而解得BC的值.(2)由(1)可知△ADC为直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分线的性质可得,根据S△ABC=S△BCE+S△ACE可求S△BCE的值.【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,,,,所以,所以,.所以边的长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论