版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼伦贝尔市莫旗尼尔基一中2025届高考数学必刷试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数满足(为虚数单位),则的值是()A. B. C. D.2.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.3.已知命题,,则是()A., B.,.C., D.,.4.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种5.设复数满足,在复平面内对应的点为,则()A. B. C. D.6.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.7.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.8.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A. B. C. D.9.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.10.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为且满足,则数列的通项_______.14.正方体的棱长为2,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的取值范围是______.15.直线xsinα+y+2=0的倾斜角的取值范围是________________.16.满足约束条件的目标函数的最小值是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.18.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.19.(12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.20.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)21.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.22.(10分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
直接利用复数的除法的运算法则化简求解即可.【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.2、C【解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.3、B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.4、B【解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.5、B【解析】
设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设∵,∴,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.6、D【解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.7、B【解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.8、A【解析】
结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题9、A【解析】
根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.10、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题11、A【解析】
根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.12、C【解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,,解得;由,可知当时,,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.14、【解析】
由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,,所以,而所以,即故答案为:.【点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.15、【解析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:16、-2【解析】
可行域是如图的菱形ABCD,代入计算,知为最小.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.18、(1)见解析;(2).【解析】
(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,,所以,存在使得,即.所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值.故,于是有,即,所以有,证毕.(2)由(1)知,的最小值为,①当,即时,为的增函数,所以,,由(1)中,得,即.故满足题意.②当,即时,有两个不同的零点,,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为.注意到时,,且此时,(ⅰ)当时,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)当时,,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去.故满足条件.综上所述:的取值范围是.【点睛】本题考查了函数与导数综合,考查了利用导数研究函数的最值和不等式的恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算能力,属于较难题.19、(Ⅰ)见解析;(Ⅱ)当时,函数的最小值是;当时,函数的最小值是【解析】
(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;
(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.【详解】函数的定义域
为.
因为,令,可得;
当时,;当时,,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,
的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数.
又,
当时,的最小值是;
当时,的最小值为综上所述,结论为当时,函数的最小值是;
当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小20、(1)0.4;(2);(3)应选择方案,理由见解析【解析】
(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为,∵,∴估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度室内植物墙全屋定制合同3篇
- 2024年合同修订:艺人经纪合同主体变更补充协议3篇
- 2024年度股权激励与绩效评估合同
- 非公开发行股票交易协议三篇
- 2024年建筑砌体抹灰质量控制服务协议版B版
- 2024年度城市基础设施建设项目BOT合同with标的:某污水处理厂的建设和运营3篇
- 2024年劳动合同书哪里找3篇
- 2024年全球化妆品品牌许可合同
- 2024年供应链廉洁合作协议2篇
- 2024年度品牌合作交流平台建设合同3篇
- 三价铬黑色钝化液配方技术
- 结直肠腺瘤病理报告
- 多胎妊娠孕中期选择性减胎术课件
- 消防设施台帐
- 生化药品附录培训
- 学校火灾隐患排查整改清单台账
- 铝合金门窗工程技术规程完整
- 2023年贵州省7月普通高中学业水平考试语文试卷
- 顾客满意度调查表模板
- 认识医生和护士PPT完整版
- 离职会签单(模板)
评论
0/150
提交评论