版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市人大学附属中学2025届高考数学必刷试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线的倾斜角为,则的值为()A. B. C. D.2.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直3.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元4.设,,则()A. B.C. D.5.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A. B. C.2 D.46.设全集,集合,,则()A. B. C. D.7.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:8.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.9.在中,,,,则边上的高为()A. B.2 C. D.10.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln211.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.12.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行四边形中,,,则的值为_____.14.设,满足约束条件,若的最大值是10,则________.15.若且时,不等式恒成立,则实数a的取值范围为________.16.若函数,则__________;__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,18.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.19.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).20.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.21.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.22.(10分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.2、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系3、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.4、D【解析】
由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.5、A【解析】
由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题6、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.7、C【解析】
根据向量的数量积运算,由向量的关系,可得选项.【详解】,,∴等价于,故选:C.【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.8、D【解析】
根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.9、C【解析】
结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.10、B【解析】
将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.11、C【解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.12、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.14、【解析】
画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.15、【解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.16、01【解析】
根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】
(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型;(2)由公式可得:,,所以所求回归直线方程为:;(3)根据题意,设,则煤气用量,当且仅当时,等号成立,即时,煤气用量最小.【点睛】此题考查根据题意求回归方程,利用线性回归方程的求法得解,结合基本不等式求最值.18、(1)证明见解析(2)【解析】
(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.19、(1),.(2),【解析】
(1)利用枚举法将范数为奇数的二元有序实数对都写出来,再做和;(2)用组合数表示和,再由公式或将组合数进行化简,得出最终结果.【详解】解:(1)范数为奇数的二元有序实数对有:,,,,它们的范数依次为1,1,1,1,故,.(2)当n为偶数时,在向量的n个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为:1,3,…,进行讨论:的n个坐标中含1个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含3个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含个0,其余坐标为1或,共有个,每个的范数为1;所以,.因为,①,②得,,所以.解法1:因为,所以..解法2:得,.又因为,所以.【点睛】本题考查了数列和组合,是一道较难的综合题.20、(1)证明见解析(2)【解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.21、(1);(2)见解析.【解析】
(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石灰矿山资源开采与利用合同3篇
- 推广计划的拟订、执行和评估
- 2025版国际商务合作合同模板汇编3篇
- 二零二五年度现代中式木工装饰工程合同4篇
- 二零二五版高速公路500KVA箱变维护保养合同2篇
- 坚果种植的社会经济效益考核试卷
- 《高血压的护理常规》课件
- 2025版农产品深加工项目贷款合同范本4篇
- 艾滋病HEALTH87课件讲解
- 2025年加盟代理分销商合同
- 2025年温州市城发集团招聘笔试参考题库含答案解析
- 2025年中小学春节安全教育主题班会课件
- 2025版高考物理复习知识清单
- 除数是两位数的除法练习题(84道)
- 2025年度安全检查计划
- 2024年度工作总结与计划标准版本(2篇)
- 全球半导体测试探针行业市场研究报告2024
- 反走私课件完整版本
- 毕业论文-山东省农产品出口贸易的现状及对策研究
- 音乐思政课特色课程设计
- 2023年四川省乐山市中考数学试卷
评论
0/150
提交评论