2022年新教材高中数学第八章立体几何初步新题型专练(含解析)_第1页
2022年新教材高中数学第八章立体几何初步新题型专练(含解析)_第2页
2022年新教材高中数学第八章立体几何初步新题型专练(含解析)_第3页
2022年新教材高中数学第八章立体几何初步新题型专练(含解析)_第4页
2022年新教材高中数学第八章立体几何初步新题型专练(含解析)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新题型专练(三)(25分钟50分)一、多选题(每小题5分,共25分,全部选对的得5分,选对但不全的得2分,有选错的得0分)1.(2021·日照高一检测)已知平面α,β,γ两两垂直,直线a,b,c满足aα,bβ,cγ,则直线a,b,c可能满足()A.两两垂直B.两两平行C.两两相交D.两两异面【解析】选ACD.如图1,a,b,c可能两两垂直.如图2,a,b,c可能两两相交;如图3,a,b,c可能两两异面.2.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,则下列命题中正确的是()A.若mα,nα,m∥β,n∥β,则α∥βB.若m⊥α,n⊥β且m⊥n,则α⊥βC.若l∥α,α⊥β,则l⊥βD.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n【解析】选BD.由α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,知:A.若mα,nα,m∥β,n∥β,则α与β相交或平行,故A错误;B.若m⊥α,n⊥β,且m⊥n,则由面面垂直的判定得α⊥β,故B正确;C.若l∥α,α⊥β,则l与β相交、平行或lβ,故C错误;D.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则由线面平行的性质定理得m∥n.故D正确.3.如图所示,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点,以下四个命题正确的是()A.PA∥平面MOB B.MO∥平面PACC.OC⊥平面PAC D.平面PAC⊥平面PBC【解析】选BD.因为PA平面MOB,故A错误;因为OM是△PAB的中位线,所以OM∥PA,又OM平面PAC,PA平面PAC,所以OM∥平面PAC,故B正确;因为AB是直径,所以BC⊥AC,所以又PA⊥平面ABC,BC平面ABC,所以PA⊥BC,又PA∩AC=A,所以BC⊥平面PAC,故C错误;又BC平面PBC,所以平面PAC⊥平面PBC,故D正确.4.如图,在长方体ABCD­A1B1C1D1中,AA1=AB=4,BC=2,M,N分别为棱C1D1,CC1A.A,M,N,B四点共面B.直线BN与B1MC.BN∥平面ADMD.平面ADM⊥平面CDD1C【解析】选BD.对于A,A,B,M在平面ABC1D1内,N在平面ABC1D1外,故A错误;对于B,如图,取CD中点E,连接BE,NE,可得BE∥B1M,∠EBN为直线BN与B1M所成角(或其补角),由题意可得△BEN为边长为2eq\r(2)的等边三角形,则∠EBN=60°,故B正确;对于C,若BN∥平面ADM,又BC∥平面ADM,则平面BCC1B1∥平面ADM,而平面BCC1B1∥平面ADD1A1,矛盾,故C错误;对于D,在长方体ABCD­A1B1C1D1中,AD⊥平面CDD1C1,AD平面ADM,所以平面ADM⊥平面CDD15.(2021·三明高一检测)如图,在四棱锥P­ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,截面BDE与直线PC平行,与PA交于点E,则下列判断正确的是()A.E为PA的中点B.PB与CD所成的角为eq\f(π,3)C.平面BDE⊥平面PACD.点P与点A到平面BDE的距离相等【解析】选ACD.对于A,连接AC,交BD于点F,连接EF,则平面PAC∩平面BDE=EF,因为PC∥平面BDE,EF平面BDE,PC平面PAC,所以EF∥PC,因为四边形ABCD是正方形,所以AF=FC,所以AE=EP,选项A正确;对于B,因为CD∥AB,所以∠PBA(或其补角)为PB与CD所成的角,因为PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB,在Rt△PAB中,PA=AB,所以∠PBA=eq\f(π,4),所以PB与CD所成的角为eq\f(π,4),选项B错误;对于C,因为四边形ABCD为正方形,所以AC⊥BD,因为PA⊥平面ABCD,BD平面ABCD,所以PA⊥BD,因为PA∩AC=A,所以BD⊥平面PAC,又BD平面BDE,所以平面BDE⊥平面PAC,选项C正确;对于D,则V三棱锥A­BDE=V三棱锥P­BDE=eq\f(1,2)V三棱锥P­ABD,所以点P与点A到平面BDE的距离相等,选项D正确.二、双空题(每小题5分,共15分,其中第一空3分,第二空2分)6.已知过球面上三点A,B,C的截面到球心的距离等于球半径的一半,且AB=6,AC=8,BC=10,则球的半径等于________;球的表面积等于________.【解析】△ABC的外接圆半径为r=5,则R=eq\r(52+\b\lc\(\rc\)(\a\vs4\al\co1(\f(R,2)))\s\up12(2)),解得球的半径为R=eq\f(10\r(3),3),表面积为S=4πR2=eq\f(400π,3).答案:eq\f(10\r(3),3)eq\f(400π,3)7.(2021·上海高一检测)已知矩形ABCD的边AB=a,BC=2,PA⊥平面ABCD,PA=2,现有以下五个数据:(1)a=eq\f(1,2);(2)a=1;(3)a=eq\r(3);(4)a=2;(5)a=4,当在BC边上存在点Q,使PQ⊥QD时,则a可以取________.(填上一个正确的数据序号即可)【解析】连接AQ,因为PQ⊥QD,根据三垂线定理可得AQ⊥QD.在平面ABCD内,直径所对的圆周角为直角,所以Q点在以AD为直径的圆上,故当BC与以AD为直径的圆有公共点时,在BC边上存在点Q,使PQ⊥QD,因此AB≤eq\f(1,2)AD=1,即a≤1.答案:(1)或(2)8.如图所示,在四棱锥P­ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,且PA=eq\r(3),AB=1,BC=2,AC=eq\r(3),则异面直线PB与CD所成的角等于________;二面角P­CD­B的大小为________.【解析】因为底面ABCD为平行四边形,所以AB平行于CD,则∠PBA是异面直线PB与CD所成的角,因为PA⊥平面ABCD,所以PA⊥AB,又PA=eq\r(3),AB=1,所以∠PBA=60°,即异面直线PB与CD所成的角是60°.因为AB=1,BC=2,AC=eq\r(3),所以BC2=AB2+AC2,所以∠BAC=90°,所以∠ACD=90°,即AC⊥CD.又因为PA⊥平面ABCD,CD平面ABCD,所以PA⊥CD,又因为PA∩AC=A,所以CD⊥平面PAC.又因为PC平面PAC,所以PC⊥CD,所以∠PCA是二面角P­CD­B的平面角.因为在直角三角形PAC中,PA⊥AC,PA=eq\r(3),AC=eq\r(3),所以∠PCA=45°,即二面角P­CD­B的大小为45°.答案:60°45°三、解答题9.(10分)如图,四边形ABCD为矩形,点A,E,B,F共面,且△ABE和△ABF均为等腰直角三角形,且∠BAE=∠AFB=90°.(1)若平面ABCD⊥平面AEBF,证明平面BCF⊥平面ADF;(2)问在线段EC上是否存在一点G,使得BG∥平面CDF,若存在,求出此时三棱锥G­ABE与三棱锥G­ADF的体积之比.【解析】(1)因为四边形ABCD为矩形,所以BC⊥AB,又因为平面ABCD⊥平面AEBF,BC平面ABCD,平面ABCD∩平面AEBF=AB,所以BC⊥平面AEBF,又因为AF平面AEBF,所以BC⊥AF,因为∠AFB=90°,即AF⊥BF,且BC,BF平面BCF,BC∩BF=B,所以AF⊥平面BCF,又因为AF平面ADF,所以平面ADF⊥平面BCF.(2)因为BC∥AD,AD平面ADF,所以BC∥平面ADF.因为△ABE和△ABF均为等腰直角三角形,且∠BAE=∠AFB=90°,所以∠FAB=∠ABE=45°,所以AF∥BE,又AF平面ADF,所以BE∥平面ADF,因为BC∩BE=B,所以平面BCE∥平面ADF.延长EB到点H,使得BH=AF,又BCAD,连接CH,HF,易证四边形ABHF是平行四边形,所以HFABCD,所以四边形HFDC是平行四边形,所以CH∥DF.过点B作CH的平行线,交EC于点G,即BG∥CH∥DF(DF平面CDF),所以BG∥平面CDF,即此点G为所求的G点.又BE=eq\r(2)A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论