茂名市2025届高考考前提分数学仿真卷含解析_第1页
茂名市2025届高考考前提分数学仿真卷含解析_第2页
茂名市2025届高考考前提分数学仿真卷含解析_第3页
茂名市2025届高考考前提分数学仿真卷含解析_第4页
茂名市2025届高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

茂名市2025届高考考前提分数学仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.2.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()3.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.4.运行如图程序,则输出的S的值为()A.0 B.1 C.2018 D.20175.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件6.已知,若,则等于()A.3 B.4 C.5 D.67.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.58.设函数,若函数有三个零点,则()A.12 B.11 C.6 D.39.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.10.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得11.若集合,,则A. B. C. D.12.已知函数且,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数则______.14.已知为偶函数,当时,,则__________.15.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.16.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,(1)求的值;(2)求边的长.19.(12分)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围.20.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.21.(12分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.22.(10分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.2、B【解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.3、D【解析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.4、D【解析】

依次运行程序框图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环.输出1.选D.5、D【解析】

结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.6、C【解析】

先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.7、D【解析】

利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.8、B【解析】

画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B.【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.9、C【解析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.10、A【解析】

根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.11、C【解析】

解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.12、B【解析】

构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先由解析式求得(2),再求(2).【详解】(2),,所以(2),故答案为:【点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.14、【解析】

由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力15、【解析】

由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.【详解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均为直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,当且仅当AE=EF=2时,取“=”,此时△AEF的面积最大,三棱锥P﹣AEF的体积的最大值为:VP﹣AEF===.故答案为【点睛】本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题.16、【解析】

根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1),①当时,,②两式相减即得数列的通项公式;(2)先求出,再利用裂项相消法求和证明.【详解】(1)解:,①当时,.当时,,②由①-②,得,因为符合上式,所以.(2)证明:因为,所以.【点睛】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平.18、(1)(2)【解析】

(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【详解】(1)因为角为钝角,,所以,又,所以,且,所以.(2)因为,且,所以,又,则,所以.19、(1)(2)【解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)∵函数和的图象关于原点对称,∴,∴原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需,解得,的取值范围是.20、(1);(2)证明见解析.【解析】

(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,,所以.(2)由为方程的两个实根,得,两式相减,可得,因此,令,由,得,则,构造函数.则,所以函数在上单调递增,故,即,可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.21、(1)最小值为,此时;(2)见解析【解析】

(1)由已知得,法一:,,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,,又,可得证.【详解】(1),法一:,,的最小值为,此时;法二:,,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),,又,.【点睛】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解函数的最值,属于中档题.22、(1)见解析(2)见解析【解析】

(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论