版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省临沂市沂南县高三第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.3.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有()①绕着轴上一点旋转;②沿轴正方向平移;③以轴为轴作轴对称;④以轴的某一条垂线为轴作轴对称.A.①③ B.③④ C.②③ D.②④4.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.5.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.6.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.27.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切8.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.9.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.210.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.211.中,点在边上,平分,若,,,,则()A. B. C. D.12.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数是______.14.已知函数的最小值为2,则_________.15.如图,在复平面内,复数,对应的向量分别是,,则_______.16.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.18.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.20.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.21.(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.22.(10分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.2、B【解析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.3、D【解析】
计算得到,,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】,,,当沿轴正方向平移个单位时,重合,故②正确;,,故,函数关于对称,故④正确;根据图像知:①③不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.4、D【解析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.5、D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.6、B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.7、D【解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.8、A【解析】
画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.9、D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.10、C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.11、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.12、B【解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.14、【解析】
首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.【详解】根据题意可知,可以发现当或时是分界点,结合函数的解析式,可以判断0不可能,所以只能是是分界点,故,解得,故答案是.【点睛】本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.15、【解析】试题分析:由坐标系可知考点:复数运算16、【解析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.【详解】解:直线,点,,直线上存在点满足,的轨迹方程是.如图,直线与圆有公共点,圆心到直线的距离:,解得.实数的取值范围为.故答案为:.【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S表示为关于k的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对:,,得:;同理:.(Ⅱ)设直线的斜率分别为,则MA:,与椭圆方程联立得:,得,得,,所以同理可得.所以,从而可以求得因为,所以,不妨设,所以当最大时,,此时两直线MA,MB斜率的比值.点睛:该题考查的是有关椭圆与直线的综合题,在解题的过程中,注意椭圆的对称性,以及其特殊性,与y轴的交点即为椭圆的上顶点,结合椭圆焦点所在轴,得到相应的参数的值,再者就是应用离心率的大小找参数之间的关系,在研究直线与椭圆相交的问题时,首先设出直线的方程,与椭圆的方程联立,求得结果,注意从函数的角度研究问题.18、(1)证明见解析;(2)【解析】
(1)要证明平面平面BDE,只需在平面内找一条直线垂直平面BDE即可;(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系,分别求出平面BEF的法向量,平面的法向量,算出即可.【详解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,设AC,BD交于O,取BE的中点G,连FG,OG,,,四边形OCFG是平行四边形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系∵BE与平面ABCD所成的角为,,,,,,.,设平面BEF的法向量为,,,设平面的法向量设二面角的大小为..【点睛】本题考查线面垂直证面面垂直、面面所成角的计算,考查学生的计算能力,解决此类问题最关键是准确写出点的坐标,是一道中档题.19、(1);(2).【解析】
(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.20、(1)(2)4【解析】
(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可.【详解】(1)将点P横坐标代入中,求得,∴P(2,),,点P到准线的距离为,∴,∴,解得,∴,∴抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,则.【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题.21、(1)证明见解析;(2)见解析;(3)存在,1.【解析】
(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),,,当时,,当时,,∴,故.(2)由题知,,,①当时,,所以在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海滩游客停车秩序指南
- 矿山设备采购招投标活动
- 医疗养生联合体合作协议
- 如何在合同中约定版式修改
- 体育馆运动木地板翻新合同
- 电商运营经理聘用合同书
- 2025建房承包合同范本
- 农田施肥设备租赁合约
- 临时班车服务合同
- 航空运动基地建设规范
- 有机肥料及微生物肥料生产技术的创新与发展
- 银行市场份额提升方案
- 镇海炼化线上测评试题
- 2024宁夏高级电工证考试题库电工理论考试试题(全国通用)
- 浙江省温州市2022-2023学年八年级上学期数学期末试题(含答案)
- 2023年客诉工程师年度总结及下一年计划
- 广东省佛山市2022-2023学年三年级上学期语文期末试卷(含答案)
- 网络运维从入门到精通29个实践项目详解
- 2024届黄冈市启黄中学中考试题猜想数学试卷含解析
- 扬州育才小学2023-2024一年级上册数学期末复习卷(一)及答案
- 04某污水处理厂630kW柔性支架光伏发电项目建议书
评论
0/150
提交评论