正态总体的参数(精)_第1页
正态总体的参数(精)_第2页
正态总体的参数(精)_第3页
正态总体的参数(精)_第4页
正态总体的参数(精)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ch8-1§9.3--§9.4

正态总体的参数

拒绝域的推导设X~N(

2),

2已知,需检验:H0:

0;H1:

0构造统计量

给定显著性水平

与样本值(x1,x2,…,xn)一个正态总体(1)关于

的检验ch8-2P(拒绝H0|H0为真)所以本检验的拒绝域为

0:U检验法ch8-3

0

0

0

0

<

0

>

0U检验法(

2已知)原假设

H0备择假设

H1检验统计量及其H0为真时的分布拒绝域ch8-4

0

0

0

0

<

0

>

0T检验法(

2未知)原假设

H0备择假设

H1检验统计量及其H0为真时的分布拒绝域ch8-5例1某厂生产小型马达,其说明书上写着:这种小型马达在正常负载下平均消耗电流不会超过0.8安培.现随机抽取16台马达试验,求得平均消耗电流为0.92安培,消耗电流的标准差为0.32安培.假设马达所消耗的电流服从正态分布,取显著性水平为=0.05,问根据这个样本,能否否定厂方的断言?解根据题意待检假设可设为ch8-6

H0:

0.8;

H1:

>0.8

未知,故选检验统计量:查表得

t0.05(15)=1.753,故拒绝域为现故接受原假设,即不能否定厂方断言.ch8-7解二

H0:

0.8;

H1:

<0.8

选用统计量:查表得

t0.05(15)=1.753,故拒绝域现故接受原假设,即否定厂方断言.ch8-8

由例1可见:对问题的提法不同(把哪个假设作为原假设),统计检验的结果也会不同.由于假设检验是控制犯第一类错误的概率,使得拒绝原假设H0的决策变得比较慎重,也就是H0得到特别的保护.因而,通常把有把握的,经验的结论作为原假设,或者尽量使后果严重的错误成为第一类错误.上述两种解法的立场不同,因此得到不同的结论.第一种假设是不轻易否定厂方的结论;第二种假设是不轻易相信厂方的结论.ch8-9

2

02

2>

02

2<

02

2

02

2=

02

2

02原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域

检验法(

已知)(2)关于

2的检验ch8-10

2

02

2>

02

2<

02

2

02

2=

02

2

02原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域(

未知)ch8-11

例2

某汽车配件厂在新工艺下对加工好的25个活塞的直径进行测量,得样本方差S2=0.00066.已知老工艺生产的活塞直径的方差为0.00040.问进一步改革的方向应如何?(P.244例6)

解一般进行工艺改革时,若指标的方差显著增大,则改革需朝相反方向进行以减少方差;若方差变化不显著,则需试行别的改革方案.设测量值,需考察改革后活塞直径的方差是否步大于改革前的方差?故待检验假设可设为:ch8-12H0:20.00040;H1:2>0.00040.此时可采用效果相同的单边假设检验H0:2=0.00040;H1:2>0.00040.取统计量拒绝域

0:落在0内,故拒绝H0.即改革后的方差显著大于改革前的方差,因此下一步的改革应朝相反方向进行.ch8-13设X~N(

1

1

2),Y~

N(

2

2

2),两样本X,Y相互独立,样本(X1,X2,…,Xn),(Y1,Y2,…,Ym)

样本值

(x1,x2,…,xn),(y1,y2,…,ym),显著性水平

两个正态总体ch8-14

1–

2

=

(

12,

22

已知)(1)关于均值差

1–

2

的检验

1–

2

1–

2

1–

2

<

1–

2>

1–

2

原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域ch8-15

1–

2

=

1–

2

1–

2

1–

2

<

1–

2>

1–

2

其中

12,

22未知

12=

22原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域ch8-16

12=

22

12

22

12

22

12>

22

12

22

12<

22(2)关于方差比

12

/

22的检验

1,

2

均未知原假设

H0备择假设

H1检验统计量及其在H0为真时的分布拒绝域ch8-17

例3

杜鹃总是把蛋生在别的鸟巢中,现从两种鸟巢中得到杜鹃蛋24个.其中9个来自一种鸟巢,15个来自另一种鸟巢,测得杜鹃蛋的长度(mm)如下:m=1519.820.020.320.820.920.921.021.0

21.021.221.522.022.022.122.3n=921.221.621.922.022.022.222.822.923.2

试判别两个样本均值的差异是仅由随机因素造成的还是与来自不同的鸟巢有关().ch8-18解

H0:

1=

2

H1:

1

2

取统计量拒绝域

0:统计量的值落在

0内,因此拒绝H0即杜鹃蛋的长度与来自不同的鸟巢有关.ch8-19例4假设机器A和机器B都生产钢管,要检验A和B生产的钢管的内径的稳定程度.设它们生产的钢管内径分别为X和Y,都服从正态分布X~N(1,12),Y~N(2,22)现从A生产的钢管中抽出18根,测得s12=0.34,从B生产的钢管中抽出13根,测得s22=0.29,设两样本相互独立.问是否能认为两台机器生产的钢管内径的稳定程度相同?(取=0.1)ch8-20解H0:

12=

22;

H1:

12

22

查表得

F0.05(17,12)=2.59,

F0.95(17,12)=拒绝域为:或由给定值算得:,落在拒绝域外,故接受原假设,即认为内径的稳定程度相同.ch8-21接受域置信区间假设检验区间估计统计量枢轴量对偶关系同一函数假设检验与区间估计的联系ch8-22正态总体

的双侧假设检验与置信区间对照接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布

0

0

2

已知)(

2

已知)原假设

H0备择假设

H1待估参数ch8-23接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布原假设

H0备择假设

H1待估参数

0

0

2未知)(

2未知)ch8-24接受域置信区间检验统计量及其在H0为真时的分布枢轴量及其分布原假设

H0备择假设

H1待估参数

2

02

2=

02

2(

未知)(

未知)ch8-25例5新设计的某种化学天平,其测量的误差服从正态分布,现要求99.7%的测量误差不超过0.1mg,即要求30.1。现拿它与标准天平相比,得10个误差数据,其样本方差s2=0.0009.试问在=0.05的水平上能否认为满足设计要求?解一H0:

1/30;H1:

1/30拒绝域:

未知,故选检验统计量ch8-26现落在拒绝域外故接受原假设,即认为满足设计要求.解二

2的单侧置信区间为H0中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论