新高考数学一轮复习 函数专项重难点突破专题02 函数的值域(原卷版)_第1页
新高考数学一轮复习 函数专项重难点突破专题02 函数的值域(原卷版)_第2页
新高考数学一轮复习 函数专项重难点突破专题02 函数的值域(原卷版)_第3页
新高考数学一轮复习 函数专项重难点突破专题02 函数的值域(原卷版)_第4页
新高考数学一轮复习 函数专项重难点突破专题02 函数的值域(原卷版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02函数的值域考点一常见函数值域一、单选题1.下列函数中值域为SKIPIF1<0的是(

)A.y=|x-1|B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.当SKIPIF1<0时,则函数SKIPIF1<0的值域为(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.已知函数SKIPIF1<0,则SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.0 C.1 D.24.函数SKIPIF1<0的值域为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知函数SKIPIF1<0,则SKIPIF1<0的值域为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题6.下列函数中,最小值为2的函数是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空题7.已知SKIPIF1<0,函数SKIPIF1<0的值域为______________8.函数SKIPIF1<0的值域为______.四、解答题9.求下列函数的值域.(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.10.求下列函数的值域:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0;(7)SKIPIF1<0;(8)SKIPIF1<0;(9)SKIPIF1<0.考点二复杂函数值域一、单选题1.函数SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空题2.函数SKIPIF1<0的最大值与最小值分别为M和m,则SKIPIF1<0的值为__________.3.已知函数SKIPIF1<0为偶函数,则函数SKIPIF1<0的值域为___________.4.求函数SKIPIF1<0的值域为_________.5.函数SKIPIF1<0的值域为__.6.函数SKIPIF1<0的值域为______.7.函数SKIPIF1<0的最大值为______.8.若SKIPIF1<0,则函数SKIPIF1<0的值域是__________.9.函数SKIPIF1<0的值域是______.三、解答题10.已知SKIPIF1<0,求SKIPIF1<0的取值范围.11.已知幂函数SKIPIF1<0过点SKIPIF1<0.(1)求实数m的值;(2)求函数SKIPIF1<0的值域.考点三抽象函数值域一、单选题1.函数SKIPIF1<0的定义域为SKIPIF1<0,值域为SKIPIF1<0,那么函数SKIPIF1<0的定义域和值域分别是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<02.已知函数SKIPIF1<0对任意SKIPIF1<0,都有SKIPIF1<0,当SKIPIF1<0,SKIPIF1<0时,SKIPIF1<0,则函数SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上的值域为(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<03.定义在R上的函数SKIPIF1<0对一切实数x、y都满足SKIPIF1<0,且SKIPIF1<0,已知SKIPIF1<0在SKIPIF1<0上的值域为SKIPIF1<0,则SKIPIF1<0在R上的值域是(

)A.R B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空题4.若函数SKIPIF1<0的值域是SKIPIF1<0,则函数SKIPIF1<0的值域是____________.5.若函数SKIPIF1<0的值域是SKIPIF1<0,则函数SKIPIF1<0的值域为__.6.SKIPIF1<0是SKIPIF1<0上的奇函数,SKIPIF1<0是SKIPIF1<0上的偶函数,若函数SKIPIF1<0的值域为SKIPIF1<0,则SKIPIF1<0的值域为_____________.三、解答题7.已知函数SKIPIF1<0的定义域为SKIPIF1<0,且同时满足:(Ⅰ)对任意SKIPIF1<0,总有SKIPIF1<0;(Ⅱ)SKIPIF1<0;(Ⅲ)若SKIPIF1<0,则有SKIPIF1<0(1)试求SKIPIF1<0的值;(2)试求函数SKIPIF1<0的最大值;(3)试证明:当SKIPIF1<0时,SKIPIF1<0.考点四复合函数值域一、单选题1.已知函数SKIPIF1<0,则SKIPIF1<0的值域为()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.函数SKIPIF1<0的定义域为SKIPIF1<0,则函数SKIPIF1<0的值域为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知SKIPIF1<0,则SKIPIF1<0的值域为(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0二、填空题4.函数SKIPIF1<0的最大值为______.5.函数SKIPIF1<0的值域是________________.6.若SKIPIF1<0,SKIPIF1<0,求函数SKIPIF1<0的值域________.7.函数SKIPIF1<0的值域为______.8.方程SKIPIF1<0有正数解,则SKIPIF1<0的取值范围是_________.9.函数SKIPIF1<0的最小值=__________________.考点五根据函数值域求参一、单选题1.已知函数SKIPIF1<0的值域为SKIPIF1<0,则实数SKIPIF1<0的取值范围是(

)A.(0,4) B.[1,4]∪{0} C.(0,1]∪[4,+∞) D.[0,1]∪[4,+∞)2.已知函数SKIPIF1<0的值域为SKIPIF1<0的值域为SKIPIF1<0,则SKIPIF1<0(

)A.7 B.8 C.9 D.103.已知函数SKIPIF1<0,若存在区间SKIPIF1<0,使得函数SKIPIF1<0在SKIPIF1<0上的值域为SKIPIF1<0,则实数SKIPIF1<0的取值范围是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.已知函数SKIPIF1<0的值域为R,则实数a的取值范围是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知函数SKIPIF1<0,SKIPIF1<0,若对任意的SKIPIF1<0,存在SKIPIF1<0,使SKIPIF1<0,则SKIPIF1<0的取值范围是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知函数SKIPIF1<0若SKIPIF1<0的值域为SKIPIF1<0,则实数SKIPIF1<0的取值范围是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题7.已知函数SKIPIF1<0的定义域为SKIPIF1<0,值域为SKIPIF1<0,则实数对SKIPIF1<0的可能值为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空题8.已知函数SKIPIF1<0在闭区间SKIPIF1<0上的值域为SKIPIF1<0,则SKIPIF1<0的最大值为________.9.若函数SKIPIF1<0的定义域和值域均为SKIPIF1<0,则SKIPIF1<0的值为__________.10.已知SKIPIF1<0,x,y满足SKIPIF1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论