安徽省定远县二中2025届高三适应性调研考试数学试题含解析_第1页
安徽省定远县二中2025届高三适应性调研考试数学试题含解析_第2页
安徽省定远县二中2025届高三适应性调研考试数学试题含解析_第3页
安徽省定远县二中2025届高三适应性调研考试数学试题含解析_第4页
安徽省定远县二中2025届高三适应性调研考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省定远县二中2025届高三适应性调研考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变2.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.3.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.4.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个5.若集合,,则A. B. C. D.6.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件7.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.8.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.10.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.11.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.12.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.14.已知,满足,则的展开式中的系数为______.15.已知,,,且,则的最小值为___________.16.如图,已知圆内接四边形ABCD,其中,,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,其中,.(1)求角的值;(2)若,,为边上的任意一点,求的最小值.18.(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.19.(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.20.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.21.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.22.(10分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.2、B【解析】

根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.3、A【解析】

画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.4、A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.5、C【解析】

解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.6、D【解析】

由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.7、B【解析】

由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.8、C【解析】

根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.9、D【解析】

将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.10、C【解析】

因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.11、A【解析】

根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.12、C【解析】

由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【详解】设函数,,因为,所以,或,因为时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.14、1【解析】

根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数.【详解】由题意,.∴的展开式中的系数为.故答案为:1.【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键.15、【解析】

由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.【详解】解:因为,,,且,所以因为,所以,当且仅当时,取等号,所以令,则,令,则,所以函数在上单调递增,所以所以则所求最小值为故答案为:【点睛】此题考查基本不等式的运用:求最值,注意变形和满足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.16、【解析】

由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中,由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【详解】(1),,由题知,,则,则,,;(2)在中,由余弦定理得,,设,其中.在中,,,,,所以,,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.18、(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,,得,.过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.在梯形中,易证,分别以,,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,,,,,,由,及,得,所以,,.设平面的一个法向量为,由得令,得m=(3,1,2)设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.19、(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】

(1)分段计算个人所得税额;

(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可.【详解】解:(1)李某月应纳税所得额(含税)为:29600−5000−1000−2000=21600元

不超过3000的部分税额为3000×3%=90元

超过3000元至12000元的部分税额为9000×10%=900元,

超过12000元至25000元的部分税额为9600×20%=1920元

所以李某月应缴纳的个税金额为90+900+1920=2910元,

(2)有一个孩子需要赡养老人应纳税所得额(含税)为:20000−5000−1000−2000=12000元,

月应缴纳的个税金额为:90+900=990元

有一个孩子不需要赡养老人应纳税所得额(含税)为:20000−5000−1000=14000元,

月应缴纳的个税金额为:90+900+400=1390元;

没有孩子需要赡养老人应纳税所得额(含税)为:20000−5000−2000=13000元,

月应缴纳的个税金额为:90+900+200=1190元;

没有孩子不需要赡养老人应纳税所得额(含税)为:20000−5000=15000元,

月应缴纳的个税金额为:90+900+600=1590元;

所以随机变量X的分布列为:990119013901590.【点睛】本题考查了分段函数的应用与函数值计算,考查了随机变量的概率分布列与数学期望,属于中档题.20、(1).(2)见解析【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论