上海市市八中学2025届高考全国统考预测密卷数学试卷含解析_第1页
上海市市八中学2025届高考全国统考预测密卷数学试卷含解析_第2页
上海市市八中学2025届高考全国统考预测密卷数学试卷含解析_第3页
上海市市八中学2025届高考全国统考预测密卷数学试卷含解析_第4页
上海市市八中学2025届高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市市八中学2025届高考全国统考预测密卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-32.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.3.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为()A. B. C. D.4.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.5.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.6.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.67.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.8.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.9.若复数(为虚数单位)的实部与虚部相等,则的值为()A. B. C. D.10.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm312.函数(且)的图象可能为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在点处的切线方程是,则的值等于__________.14.已知,满足约束条件则的最小值为__________.15.若函数,则__________;__________.16.若,则=____,=___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.18.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.19.(12分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.20.(12分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.21.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.22.(10分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.2、D【解析】

先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.3、B【解析】

作出图形,设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【详解】如下图所示:设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,,平面,平面,平面平面,,,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,,,因此,.故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.4、B【解析】

根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.5、D【解析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.6、B【解析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.7、A【解析】

利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.

由等比数列的性质可得,.

∴与的等比中项

故选A.【点睛】本题考查了等比中项的求法,属于基础题.8、D【解析】

根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.9、C【解析】

利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.10、C【解析】

取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.11、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.12、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.15、01【解析】

根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.16、12821【解析】

令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】

(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程为,设,联立方程得到,,计算,得到答案.【详解】(1)设以为直径的圆心为,切点为,则,取关于轴的对称点,连接,故,所以点的轨迹是以为焦点,长轴为4的椭圆,其中,曲线方程为.(2)设直线的方程为,设,直线的方程为,同理,所以,即,联立,所以,代入得,所以点都在定直线上.【点睛】本题考查了轨迹方程,定直线问题,意在考查学生的计算能力和综合应用能力.18、(1)当时,无极值;当时,极小值为;(2).【解析】

(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.19、(1)最小值为,此时;(2)见解析【解析】

(1)由已知得,法一:,,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,,又,可得证.【详解】(1),法一:,,的最小值为,此时;法二:,,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),,又,.【点睛】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解函数的最值,属于中档题.20、(1)(2)证明见解析【解析】

(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值,求出,即可得答案;(2)根据题意可知,,因为,所以可设直线CD的方程为,将直线代入曲线的方程,利用韦达定理得到的关系,再代入斜率公式可证得为定值.【详解】(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值.所以,所以,,故椭圆E的标准方程为.(2)根据题意可知,,因为,所以可设直线CD的方程为.由,消去y可得,所以,即.直线AD的斜率,直线BC的斜率,所以,故为定值.【点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.21、(1)见解析;(2).【解析】

(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面,则②,由①②知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,,,,所以,,,设,,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,,则平面,从而M到平面的距离,所以.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论