版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市蓟州区2025届高三第二次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或92.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件3.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.4.复数的虚部是()A. B. C. D.5.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.6.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关9.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A. B. C.2 D.410.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.11.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.12.设为等差数列的前项和,若,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则___________.14.能说明“在数列中,若对于任意的,,则为递增数列”为假命题的一个等差数列是______.(写出数列的通项公式)15.已知是偶函数,则的最小值为___________.16.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的极坐标方程;(2)设和交点的交点为,求的面积.18.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.19.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.20.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点.(1)求证:平面;(2)若,求二面角的余弦值大小.21.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.22.(10分)设复数满足(为虚数单位),则的模为______.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.2、C【解析】
先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.3、C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题4、C【解析】因为,所以的虚部是,故选C.5、A【解析】
由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.6、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.7、D【解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.8、B【解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.9、A【解析】
由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题10、C【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.11、A【解析】
根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.12、C【解析】
根据等差数列的性质可得,即,所以,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.14、答案不唯一,如【解析】
根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设,则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.15、2【解析】
由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题16、【解析】
由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【详解】(1)曲线的参数方程为(α为参数),消去参数的的直角坐标方程为.所以的极坐标方程为(2)解方程组,得到.所以,则或().当()时,,当()时,.所以和的交点极坐标为:,.所以.故的面积为.【点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.18、(1);(2)证明见解析;(3)是,理由见解析.【解析】
(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.【详解】(1)由知其焦点的坐标为,也是椭圆的一个焦点,,①又与的公共弦的长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为,,②联立①②,得,,故的方程为;(2)如图,,由得,在点处的切线方程为,即,令,得,即,,而,于是,因此是锐角,从而是钝角.故直线绕点旋转时,总是钝角三角形;(3)设直线,直线,、、,则,设向量和的夹角为,则的面积为,由,可得,同理可得,故有.又,故,则,因此,的面积为定值.【点睛】本题考查了圆锥曲线的和直线的位置与关系,考查钝角三角形的判定以及三角形面积为定值的求解,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于斜率的方程,计算量大,属于难题.19、(1)证明见解析,;(2)11202.【解析】
(1)由n,,成等差数列,可得,,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;(2)由(1)中的可求出,根据和求出数列,中的公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.【详解】(1)证明:因为n,,成等差数列,所以,①所以.②①-②,得,所以.又当时,,所以,所以,故数列是首项为2,公比为2的等比数列,所以,即.(2)根据(1)求解知,,,所以,所以数列是以1为首项,2为公差的等差数列.又因为,,,,,,,,,,,所以.【点睛】本题考查等比数列的定义,考查分组求和,属于中档题.20、(1)见解析;(2)【解析】
(1)设中点为,连接、,首先通过条件得出,加,可得,进而可得平面,再加上平面,可得平面平面,则平面;(2)设中点为,连接、,可得平面,加上平面,则可如图建立直角坐标系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【详解】(1)证明:设中点为,连接、,为等边三角形,,,,,,即,,,平面,平面,平面,为的中位线,,平面,平面,平面,、为平面内二相交直线,平面平面,平面DMN,平面;(2)设中点为,连接、为等边三角形,是等腰三角形,且顶角,,、、共线,,,,,平面平面.平面平面平面,交线为,平面平面.设,则在中,由余弦定理,得:又,,,,,为中点,,建立直角坐标系(如图),则,,,.,,设平面的法向量为,则,,取,则,,平面的法向量为,,二面角为锐角,二面角的余弦值大小为.【点睛】本题考查面面平行证明线面平行,考查向量法求二面角的大小,考查学生计算能力和空间想象能力,是中档题.21、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,从而.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年股权及土地使用权混合抵押合同3篇
- 2024年汽车消费贷款服务合作协议书3篇
- 素描外国歌曲课程设计
- 税务管理系统java课程设计
- 淬火槽课程设计
- 2024年古建筑修复施工借款合同范本3篇
- 2024年汽车贷款违约金计算方式3篇
- 移形幻影课程设计
- 管材课程设计总结
- 电气自动化有关课程设计
- 2024至2030年中国冲调饮料行业市场深度研究及投资规划建议报告
- DB23T 1727-2016 地理标志产品 克东天然苏打水
- 2023-2024学年黑龙江省哈尔滨市道里区七年级(下)期末数学试卷(五四学制)(含答案)
- SL+290-2009水利水电工程建设征地移民安置规划设计规范
- 水电站施工合同水电站施工合同(2024版)
- 河南省周口市商水县2023-2024学年七年级下学期期末语文试题
- 渭南市白水县2021-2022学年七年级上学期期末考试数学试卷【带答案】
- 2024年美国压力袜市场现状及上下游分析报告
- 2012建设工程造价咨询成果文件质量标准
- 心内科介入手术围手术期处理
- 2024年春季学期言语交际期末综合试卷-国开(XJ)-参考资料
评论
0/150
提交评论