版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏邳州运河中学2025届高三下学期第六次检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前项和为,若,,则()A.21 B.22 C.11 D.122.已知复数和复数,则为A. B. C. D.3.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.2824.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知集合,则集合()A. B. C. D.6.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.637.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心8.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.9.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路10.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④11.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.12.函数的图象为C,以下结论中正确的是()①图象C关于直线对称;②图象C关于点对称;③由y=2sin2x的图象向右平移个单位长度可以得到图象C.A.① B.①② C.②③ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.若存在直线l与函数及的图象都相切,则实数的最小值为___________.14.已知非零向量,满足,且,则与的夹角为____________.15.在平面直角坐标系中,点在曲线:上,且在第四象限内.已知曲线在点处的切线为,则实数的值为__________.16.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.18.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)19.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.20.(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.21.(12分)若关于的方程的两根都大于2,求实数的取值范围.22.(10分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.2、C【解析】
利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3、B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题4、A【解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.5、D【解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.6、D【解析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.7、A【解析】
根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.8、D【解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.9、D【解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.10、A【解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.11、A【解析】
求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.12、B【解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以①正确.,所以②正确.将的图象向右平移个单位长度,得,所以③错误.所以①②正确,③错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设直线l与函数及的图象分别相切于,,因为,所以函数的图象在点处的切线方程为,即,因为,所以函数的图象在点处的切线方程为,即,因为存在直线l与函数及的图象都相切,所以,所以,令,设,则,当时,,函数单调递减;当时,,函数单调递增,所以,所以实数的最小值为.14、(或写成)【解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.15、【解析】
先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为:【点睛】本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.16、【解析】
联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,,,,,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)因为,,成等差数列,所以,由余弦定理可得,因为,所以,即,所以.(2)若B为直角,则,,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*).又,所以,,所以,与(*)矛盾,所以不存在满足为直角.18、(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.19、(1)见详解;(2).【解析】
(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【详解】(1)证:,,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【点睛】很新颖的立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024物业和业主关于共有收益分配的合同
- 二零二五年新能源汽车电池采购协议2篇
- 2024建筑材料批发及零售协议模板版B版
- 2024版包机运输合同协议书范本
- 二零二五年度电子商务合伙集资协议书3篇
- 专业爆破作业协议范本2024年版版B版
- 2024应收帐款质押担保合同
- 二零二五年度汽车购置合伙协议书3篇
- 二零二五年度货运司机意外伤害保险合同示例3篇
- 二零二五年度车辆购置税分期缴纳服务合同3篇
- 亚硝酸钠安全标签
- 土建工程定额计价之建筑工程定额
- 学校安全工作汇报PPT
- 成都大熊猫基地英文导游词-四川大熊猫基地解说词
- 一年级语文上册《两件宝》教案1
- 咨询公司工作总结(共5篇)
- GB/T 38836-2020农村三格式户厕建设技术规范
- 小品《天宫贺岁》台词剧本手稿
- 京东商业计划书课件
- 肥料采购验收单模板
- 部编版五年级下册语文根据课文内容填空(常用)
评论
0/150
提交评论