版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北邯郸市磁县滏滨中学2025届高三下学期一模考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数的定义域为,则函数的定义域为()A. B.C. D.3.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.的展开式中有理项有()A.项 B.项 C.项 D.项5.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}6.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.7.设集合,,若,则()A. B. C. D.8.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.9.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A. B. C. D.110.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.11.设是虚数单位,则()A. B. C. D.12.设,满足约束条件,则的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.14.设,则______.15.若曲线(其中常数)在点处的切线的斜率为1,则________.16.若变量,满足约束条件则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.18.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.19.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.20.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.21.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.22.(10分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.2、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.3、A【解析】
由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.【名师点睛】三角函数图象变换方法:4、B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.5、C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.6、B【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.7、A【解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.8、C【解析】
利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.9、B【解析】
根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.【详解】根据题意,设,则由代入可得即点的轨迹方程为又因为,变形可得,即,且所以由平面向量基本定理可知三点共线,如下图所示:所以的最小值即为到直线的距离最小值根据圆的切线性质可知,当与圆相切时,有最大值设切线的方程为,化简可得由切线性质及点到直线距离公式可得,化简可得即所以切线方程为或所以当变化时,到直线的最大值为即的最大值为故选:B【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用,圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.10、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.11、A【解析】
利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.12、D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出所有可能,找出符合可能的情况,代入概率计算公式.【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为.【点睛】本题考查古典概型及其概率计算公式,属于基础题14、121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.15、【解析】
利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.16、7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)结合已知可得,求出a,b的值,即可得椭圆方程;(Ⅱ)由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.【详解】解:(Ⅰ)可得,结合,解得,,,得椭圆方程;(Ⅱ)易知直线的斜率k存在,设:,由,得,由,得,∵,设点O到直线:的距离为d,,,由,得,,,∴∴,∴而,,易知,∴,则,四边形的面积当且仅当,即时取“”.∴四边形面积的最大值为4.【点睛】本题考查了由求椭圆的标准方程,直线与椭圆的位置关系,考查了学生的计算能力,综合性比较强,属于难题.18、(1)(2)【解析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所以直线被圆截得的弦长的最大值为.考点:直线与圆位置关系19、(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.【详解】(1)由题知,,所以,因此动点的轨迹是以,为焦点的椭圆,又知,,所以曲线的标准方程为.又由题知,所以,所以,又因为点在抛物线上,所以,所以抛物线的标准方程为.(2)设,,由题知,所以,即,所以,又因为,,所以,所以为定值,且定值为1.【点睛】本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.20、(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.【解析】
(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率计算公式求解即可;(Ⅲ)结合表中的数据判断即可.【详解】(Ⅰ)表中十二周“水站诚信度”的平均数.(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周均为“高诚信度”事件为,总的基本事件为共15种,事件所包含的基本事件为共10种,由古典概型概率计算公式可得,.(Ⅲ)两次活动效果均好.理由:活动举办后,“水站诚信度'由和看出,后继一周都有提升.【点睛】本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.21、(1);(2).【解析】
(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版浅析劳动合同法下gaming行业劳务派遣问题2篇
- 2024年度高品质原材料供应合同版B版
- 2024版设备采购合同:戊公司与己公司之间的设备采购及安装协议3篇
- 2024版物业公司车辆管理服务合同3篇
- 2024年供应商定期供应合作合同样本一
- 2024年度道路改造项目协议版B版
- 2024年房地产专业顾问服务协议模板版
- 2024年初创公司股权分配协议3篇
- 2024年企业间借款合同
- 2024年度物流仓储服务合同:供应链管理3篇
- 2024-2029年中国红蓝光治疗仪行业市场现状分析及竞争格局与投资发展研究报告
- (2024年)传染病培训课件
- 中医心脏病预防知识讲座
- 供应商环境与社会责任管理制度
- 人工智能与生命科学的交叉应用
- 铝蜂窝行业分析
- 军人职业行业分析
- 语境设置在初中英语教学中的应用 论文
- 物理学教育中的信息化教学设计方案
- 物联网环境监测系统设计
- 站务员:站务员考试试题
评论
0/150
提交评论