江苏卷2025届高三第四次模拟考试数学试卷含解析_第1页
江苏卷2025届高三第四次模拟考试数学试卷含解析_第2页
江苏卷2025届高三第四次模拟考试数学试卷含解析_第3页
江苏卷2025届高三第四次模拟考试数学试卷含解析_第4页
江苏卷2025届高三第四次模拟考试数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏卷2025届高三第四次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是一个算法流程图,则输出的结果是()A. B. C. D.2.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.3.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为()A. B. C. D.4.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.5.已知是边长为的正三角形,若,则A. B.C. D.6.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.7.设,,,则、、的大小关系为()A. B. C. D.8.已知为虚数单位,若复数,则A. B.C. D.9.的展开式中的一次项系数为()A. B. C. D.10.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.11.设,满足,则的取值范围是()A. B. C. D.12.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为______.14.数列的前项和为,则数列的前项和_____.15.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.16.曲线在点处的切线方程为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别为,,,且.求的值;设的平分线与边交于点,已知,,求的值.18.(12分)已知数列的各项都为正数,,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,其中表示不超过x的最大整数,如,,求数列的前2020项和.19.(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.20.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.21.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).22.(10分)如图,在正三棱柱中,,,分别为,的中点.(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】

根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.3、D【解析】

根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率.【详解】由题意,,又,∴,∴,在中,即,∴.故选:D.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式.4、C【解析】

由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.5、A【解析】

由可得,因为是边长为的正三角形,所以,故选A.6、B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.7、D【解析】

因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.8、B【解析】

因为,所以,故选B.9、B【解析】

根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.【详解】由题意展开式中的一次项系数为.故选:B.【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.10、B【解析】

由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.11、C【解析】

首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.12、B【解析】

根据新运算的定义分别得出◆2020和2020★2018的值,可得选项.【详解】由()★★,得(+2)★★,又★,所以★,★,★,,以此类推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此类推,◆2020,所以(◆2020)(2020★2018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.14、【解析】

解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【点睛】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.15、【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.16、【解析】

对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【点睛】本题主要考查过曲线上一点的切线方程的求法,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【解析】

利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,,,,,又,为三角形内角,故,,则,故,;(2)平分,设,则,,,,则,,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.18、(Ⅰ);(Ⅱ)4953【解析】

(Ⅰ)递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(Ⅱ),根据新定义和对数的运算分类讨论数列的通项公式,并求前2020项和.【详解】(Ⅰ)∵,∴,∴又∵数列的各项都为正数,∴,即.∴数列是以2为首项,2为公比的等比数列,∴.(Ⅱ)∵,∴,.∴数列的前2020项的和为.【点睛】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.19、(1)a=-1,b=1;(2)-1.【解析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知.(2)由(1)知:,∴对任意恒成立对任意恒成立对任意恒成立.令,则.由于,所以在上单调递增.又,,,,所以存在唯一的,使得,且当时,,时,.即在单调递减,在上单调递增.所以.又,即,∴.∴.∵,∴.又因为对任意恒成立,又,∴.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.20、(1),;(2)见解析【解析】

(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解【详解】(1)将的参数方程(为参数)消去参数,得.因为,,所以曲线的直角坐标方程为.(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,则圆心到直线的距离,所以与圆相离,且.连接,在中,,所以,,即的最小值为.【点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题21、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】

(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.22、(1)证明见详解;(2).【解析】

(1)取中点为,通过证明//,进而证明线面平行;(2)取中点为,以为坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论