2025届山西省范亭中学高三最后一卷数学试卷含解析_第1页
2025届山西省范亭中学高三最后一卷数学试卷含解析_第2页
2025届山西省范亭中学高三最后一卷数学试卷含解析_第3页
2025届山西省范亭中学高三最后一卷数学试卷含解析_第4页
2025届山西省范亭中学高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省范亭中学高三最后一卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.2.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.3.下列函数中,图象关于轴对称的为()A. B.,C. D.4.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.5.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.6.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.7.若集合,,则下列结论正确的是()A. B. C. D.8.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.9.复数的模为().A. B.1 C.2 D.10.若复数满足,则的虚部为()A.5 B. C. D.-511.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.12.已知向量,夹角为,,,则()A.2 B.4 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______.14.函数的图象在处的切线方程为__________.15.已知,则_____16.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.18.(12分)在中,角A、B、C的对边分别为a、b、c,且.(1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.19.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.20.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.21.(12分)已知函数.(1)解不等式;(2)若,,,求证:.22.(10分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.2、B【解析】

先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.3、D【解析】

图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.4、B【解析】

由题意得,,然后求解即可【详解】∵,∴.又∵,∴,∴.【点睛】本题考查复数的运算,属于基础题5、A【解析】

求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.6、A【解析】

求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.7、D【解析】

由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.8、B【解析】

为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.9、D【解析】

利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.10、C【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11、D【解析】

由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.12、A【解析】

根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是.次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.14、【解析】

利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.15、【解析】

化简得,利用周期即可求出答案.【详解】解:,∴函数的最小正周期为6,∴,,故答案为:.【点睛】本题主要考查三角函数的性质的应用,属于基础题.16、【解析】

由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)答案见解析【解析】

(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.18、(1);(2)【解析】

(1)由,利用正弦定理转化整理为,再利用余弦定理求解.(2)根据,利用两角和的余弦得到,利用数形结合,设,在中,由正弦定理求得,在中,求得再求解.【详解】(1)因为,所以,即,即,所以.(2)∵,.所以,从而.所以,.不妨设,O为外接圆圆心则AO=1,,.在中,由正弦定理知,有.即;在中,由,,从而.所以.【点睛】本题主要考查平面向量的模的几何意义,还考查了数形结合的方法,属于中档题.19、(1);(2)【解析】

(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.20、(1)(2)【解析】

(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.21、(1);(2)证明见解析.【解析】

(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.22、(1);(2)证明见解析.【解析】

(1),分,,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论