艾昆纬-数字化转型:临床试验的新时代 Digital Transformation A New Era for Clinical Trials 2024_第1页
艾昆纬-数字化转型:临床试验的新时代 Digital Transformation A New Era for Clinical Trials 2024_第2页
艾昆纬-数字化转型:临床试验的新时代 Digital Transformation A New Era for Clinical Trials 2024_第3页
艾昆纬-数字化转型:临床试验的新时代 Digital Transformation A New Era for Clinical Trials 2024_第4页
艾昆纬-数字化转型:临床试验的新时代 Digital Transformation A New Era for Clinical Trials 2024_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IQVIA

WhitePaper

DigitalTransformation:

ANewEraforClinicalTrials

NATALIAKOTCHIE,SeniorVicePresident,AppliedDataScienceCenter

CHRISTINALARSEN,Director,Innovation,DataSciences,Safety&MedicalRAJNEESHPATIL,VicePresident,DigitalStrategy&Innovation

SABRINASTEFFEN,VicePresident,HeadofInnovation&DataStrategyforDataSciences,Safety&Medical

Tableofcontents

Introduction3

Technologytrendsinclinicaldevelopment3

Designandplanning:Reducing‘whitespace’6

Earlyiterativeplanningandbenchmarking6

Real-timescenarioplanning7

Demandforreal-timedatafordecision-making7

Needforincreasedsitesupport7

Dataflowanddigitization,enablingfasterinsights8

Callforcommondatamodelsandstandards9

Remainingbottlenecks:‘Collaborationtax’andtheneedforindustry-wideadoption9

Conclusion9

References10

Abouttheauthors11

Introduction

Digitaltransformationishappeningallaroundineverydaylife.Smartphones,watchesandlaptopsconnectandsyncseamlessly;AI-drivenecommerceimprovesconsumer

experiencesforshopping,streamingentertainment

andsocialmedia.Intheretailsectorinparticular,digital

transformationisaddingvalueforcustomers.Operational

processesarebeingsuccessfullystandardized.One

exampleistheuseofstock-keepingunits(SKUs)that

appearasbarcodesorquickresponse(QR)codeson

retailproductlabels.Theseenableretailerstomanagethesupplychainandstockingprocess,increasing

productavailabilityforconsumers.Digitalbankinghasdisruptedtraditionalbankingmodelsbyimplementingstandardizationandcommondefinitions,improving

speed,qualityandgovernanceofinteractions,all

translatingintoabetterend-userexperience.

Theever-increasingcomplexityofclinicaltrialsimpedesefficiency.Asinotherindustries,digitaltransformation—includingdigitization,automationandartificial

intelligence/machinelearning—isimprovingefficiency,enhancingpatientexperiencesandunlockingcrucial

insightsacrosshealthcare.Electronicschedulingis

increasinglyavailableforhealth-relatedappointments,

withpatientportalsenablinghealthinformationtobe

self-managed.IntegrationofAIismakingclinicaltrials

moreaccessible,personalizedandtransparent,fosteringpatient-centrictrialenvironmentsandaccelerating

developmentofnewtherapies.

Overall,digitaltransformationhaspotentialtohelp

clinicaltrialtechnologiestobefutureready,bringing

valuetostakeholdersfrompatientsandsitestosponsorcompaniesandCROs.AuthoredbyIQVIAexperts,

thiswhitepaperprovidesahigh-leveloverviewofkey

elementstoconsiderwhendeployingdigitalcapabilitiesinclinicaltrials.

Technologytrendsinclinicaldevelopment

Currenttechnology-enabledtrendsinclinicaldevelopmentinclude:

•Improvingdecisionmaking,enablingfaster,evidence-baseddecisions

•OptimizingR&Dandclinicaltrials,whichincludes

useofdigitalizationandAI/MLinassetidentification,indicationprioritization,studydesignandplanning

andpatientenrollment;patient-centrictrialprocessesusingtelemedicine,wearables,sensorsanddevices;andreducingthepatientandsiteburdeninvolvedinclinicalresearch

•Enhanceddatacollectionandanalysis,including

remotedatacollectionandreviewwithaccessto

sourcedata;centralizedmonitoringofsiteandclinicaldataprocesses;andelectroniccaptureofdatathroughpatient-generateddatamechanisms,suchasePRO

•Streamliningprocesses/collaboration,involving

automationoftrialadministrativetaskstoimproveefficiencyandcompliance;processautomationto

reviewclinicaldatasignalsforearlyidentificationofrisks;andcollaborativedevelopmentofalgorithms

•Creatinginteroperableecosystemsbyimproving

integrationsbetweenclinicalsystemstooptimize

clinicalworkflows;usingcloud-basedplatformsfordatasharingandcollaborationbetweensponsors,

researchers,sitesandCROs;andenablingenhancedsponsoroversight.

|3

DIGITALTRANSFORMATIONDEFINITIONS

Digitalrepresentsusertouchpointsanddataassetsgeneratedfromsystems,computers,andapplications.Examplesofdigital

approachesincludehealth-relatedapps,

electronicdatacapture,wearables,sensors,devices,andoperationalclinicalsystems,

eConsent,ePRO,eCOA,andconnecteddevices.

Digitizationisaboutconvertinganalog

dataintodigitalform(suchasfromapaperdocumenttoaPDFfile).Digitalizationis

aboutusingtechtotransformbusinessprocesses(automatingtasks,etc).

Digitalizationinvolvesusingtechnologytotransformbusinessprocesses.Thisenablesdigitalassetstobemachine-readable,

comprisinganimportantpartofautomation.

Digitaltransformationistheintegrationofdigitaltechnologyintoallareasofa

business,fundamentallychanginghowitoperatesanddeliversvaluetocustomers.

Adigitaloperatingmodelcombines

multipledimensionsthatcollectivelyenabledigitalandtechnologycapabilitiestodeliverdefinedstrategicobjectives.Thisfocuses

onculture,customerjourneys,dataand

analytics,inadditiontothedimensionsofpeople,processandtechnology.

Thebenefitsofdigitalapproachesareillustratedin

Figure1,whichillustrateshow‘digitalnative’companies—wherevaluecreationinproducts,servicesanduserexperienceisbasedondigitaltechnologies—can

outstriptraditionalfirms.Thisisduetothefactthatthevaluethatscaledeliverseventuallytapersoffintraditionaloperatingmodels,butitcanclimbmuchhigherindigitaloperatingmodels.

Figure1:Digitaloperatingmodelstendtooutperformtraditionaloperatingmodels2,3

TraditionaloperatingmodelDigitaloperatingmodel

>

Numbersofusers

ForerunnersofinnovationinthehealthcareecosystemareshowninFigure2.Thesereflectaccelerationin

scientificinnovation,increasinguseofreal-worldevidencetodrivedecision-making,andthefactthatempowered

patientsareengaginginnewways.

“Examplesofdigitalapproaches

includehealth-relatedapps,

electronicdatacapture,wearables,sensors,devices,eConsent,ePRO,eCOA,andconnecteddevices”

4|DigitalTransformation:ANewEraforClinicalTrials

Figure2:Healthcareecosysteminnovationdrivinggrowthandpatientbenefits

Scientificinnovationisaccelerating

Real-worldevidenceisdrivingdecision-making

Empoweredpatientsareengaginginnewways

Innovationdrivers

NOVELTHERAPEUTICS

DIGITALPATIENTENGAGEMENT

TELEHEALTH

DIGITALTHERAPEUTICS

Artificial

DECISIONSUPPORT

MEDICALDEVICES

Intelligence

CLINICALWORKFLOW

REMOTEMONITORING

Pharmacompaniesareincreasinglyembracingdigital

transformationinanefforttounlockvalue(Figure3).

Currently,40-50%ofpharmacompaniesbenefitfromAI,4withtwooutofthreecompaniesplanningtoinvestmoreinIT.5ThesebenefitsincludethefactthatAIcanpredictbiomolecularstructures,6andAI-designedmolecules

recordphaseIsuccessratesof80-90%,comparedwith55-65%forthosesourcedusingtraditionalapproaches.7

Patientrecruitmentcanbeuptotwotimesfasterwhen

dataandpredictivemodelsareused,8anddecentralizedtrialshavebeenshowntoreducetrialcostsby2-3%,withafour-foldreturnoninvestmentusingmobiletechnology,telehealth,in-homevisitsandotherremoteapproaches.9Finally,useofdigitaloutcomemeasuresincreasesvalue

byprovidingpatientbenefits.10

Figure3:Currentpharmaindustryeffortstounlockvaluethroughdigitaltransformation

Decentralizedtrials

Reducetrialscostby2-3%withROIof4xusingmobiletech,telehealth,in-homevisits,etc.

•40-50%ofpharma

companiesbenefitfromAI

•2of3companiesplantoinvestmoreinIT

Successrate

Cost

Drugdiscovery

PhaseIsuccessrateof80-90%forAIdesignedmoleculesvs55-65%forthetraditionalapproach

Target

identification&validation

>

Compoundscreening

Lead

>identification&

optimization

>

Pre-clinicalstudies

>PhaseItrials

>PhaseIItrials

>PhaseIIItrials

>Regulatoryapproval

>Commercialization

Post-

>marketing

studies

>

Digitaloutcomes

Patientbenefitsusingnoveldigitalendpoints:apps,VR,etc.

Value

Biomolecularstructure

AIeffortlesslypredicts

structureofproteins,DNA,RNA,ligands,ions,etc.

Volume

Patientrecruitment

Upto2xfasterpatient

recruitmentthroughdata&predictivemodels

Speed

|5

Severalpossibleapproachestoderivingmorevalueforthevariousclinicaltrialstakeholdersusingadigitaloperating

modelareillustratedinFigure4.Whiletraditionalapproacheshavefocusedatfunction-specificandcross-functional

levels,digitaltransformationhasafocusoninteroperabilityandintegrationacrosstheenterpriseand,ultimately,acrossthevaluechain.Advancesareshownfromlefttoright,withfunctionalsilosbeingreimaginedasafullyinterconnected

valuenetwork.

Figure4:Potentialwaystoderivemorevalueforclinicaltrialstakeholders

FunctionspecificCross-functionalAcrossenterpriseAcrossvalue-network

>

Traditionalstate

Digitaloperationsstate–interoperabilityandintegrationfocus

Designandplanning:Reducing‘whitespace’

Sponsorsareeagertoreducethe‘whitespace’inclinicaldevelopment,definedasthetimetakentotransition

betweenresearchphasesthataffectscostsandtimelines.Earlyengagementwithsponsors,ideallyasmuchas

12monthsbeforestudystartup,canhelpaddressthis.

Benefitstothesponsorincludehavingtheabilitytomakedata-drivenstudydesigndecisions—suchaseligibility

criteriaandscheduleofactivities—basedonananalysisofkeyparameters,includingpatientandsiteburden,

whileaddressingthepotentialconsequencesofthesedecisionsonpatientrecruitmentandsiteparticipation.

Earlyiterativeplanningandbenchmarking

Usingthistimeforearlyiterativeplanningand

benchmarkingcanimprovedecision-makingand

savetimeatlaterstages.Iteratingondesignideasto

assessmultiplescenarioscanhelpsponsorsunderstandtheimpacttheirchoiceswillhavedownstream,providing

earlyinsightintopotentialoperationalrisksandthe

trade-offstoconsider.Forexample,useoftechnologymightimprovepatientparticipationbutwiththetrade-offofincreasingburdensometasksandaddedcosts

atsitelevel.IQVIAhasalibraryofdesignanalytics

andbenchmarksthatcanbeappliedatvariouspointsthroughoutthedesigndevelopmentcontinuum.Theseanalyticsprovideinsightsthatallowsponsorstomakeinformeddecisionsthatsupportprotocoloptimization.Additionally,protocolscanberapidlyassessedand

scoredforcomplexity,patientburdenandsiteburden,

whichgivessponsorsinsightsintowhichdesignelementsmightleadtooperationalchallenges.

6|DigitalTransformation:ANewEraforClinicalTrials

Earlydesignandoperationalplanningenabletheprotocoltobefinalizedattheearliestpossiblestage.Theremay

beoptionsforstreamlining,forexamplebyfocusingonprimaryandsecondaryendpointsandincludingonly

essentialexploratoryendpoints.Fromadatascience

perspective,itisvitaltotaketimeupfronttoidentify

potentialrisksandtoconsiderthebiostatisticalanalysesthatwillberunattheendofthestudytodetermine

factorsthatinfluencethedatacollectionstrategyanddigitalcapabilityselection.

Real-timescenarioplanning

Real-timescenarioplanningisincreasinglybeingusedforclinicaltrialplanning.Thishistoricallyincludedtheuseoftraditionalstatisticalapproaches,suchasMonteCarlo

simulationsforenrollmentratesandotherscenarios.

IQVIA’sstudyplanningandenrollmentoptimization

platformleveragesexpansive,globalreal-worlddataandAItoquicklybuildoptimalenrollmentstrategies.Itallowssponsorstoexplorearangeofscenarioswithenriched

informationaboutthecountriesunderconsiderationfortheirstudy.UsingcontemporarystatisticalmethodsandAI/MLcapabilities,alternativeoptionsaremodeledbasedontimeandcost,includingquickest,lowestcostand

balancedoptions.Representingafundamentalchange

inhowplanningisconducted,thisuseoftechnologyforscenario-baseddecisionmakingoffersarapid,highly-

accurateapproachtoidentifyingtheoptimalcountryandsiteselection,resultinginaclear,conciseplanthatmeetssponsorobjectives.

Asthestudyprogresses,real-timedatasupportsplan

revisionsanddevelopmentofnewprojections,helping

studyteamsgetaheadofpotentialchallengesandcoursecorrectasneeded.Usingtechnologytoconductreal-timeanalysescanaccelerateandinformdecision-making,

helpingmeetsponsorneedsforproactive,agileapproachestotheirstudyfeasibilityandenrollmentstrategies.

“Thereisademandfromsponsors tocompleteactivitieswithincreasedspeedandprecision,withcontinuousdataflowtosupportrapiddetectionoftrendsanddecision-making.”

Demandforreal-timedatafordecision-making

Overall,thereisademandfromsponsorstocompleteactivitieswithincreasedspeedandprecision,with

continuousdataflowtosupportrapiddetectionoftrendsanddecision-making.ThisdemandcanbemetbyIQVIA

digitalplatformsandapplicationsthatprovideautomationandconnectivity.Thereisalsoageneralshiftawayfrom

siteentereddata,likeelectronicdatacapture(EDC),infavorofpatientreporteddatafromconnecteddevicesandelectronicclinicaloutcomeassessment(eCOA),

whicheliminateslosttimewaitingfortranscription.Dataintegrationsautomaticallyfeeddatafromalldatasourcesintoadatarepositoryforaggregation.Asdataupdates,

itisautomaticallyconnectedtothedigitaloperationalprocesses,enablingcreationofcontinuously-updatedoversightdashboardsfortrialmanagement.

Digitizationeliminatestheneedformanualreviews,

reconciliationsandlogs,furtherimprovingtheway

dataflowsintheecosystemtoenableimprovementsindownstreamprocesses,suchasqualitymanagement,

compliancereviewofsites,patientsignaldetection,dataqualityissuesanddatamanagement.

|7

Needforincreasedsitesupport

Therehasbeenaproliferationinthenumberofsite-facingtechnologiesinrecentyears.Fromtechnologystrategy

andadoptionperspectives,theseposechallengesforsiteengagementandsiteenablement.Thereisaneedforsitesupportto:

•Reducetheadministrativeburdenforsitesandthus

improvesiteengagementfordocumentmanagementsystems.IQVIAofferselectronicinvestigatorsitefile

implementation,eBindersandeLogs.Thishelpsreducetheburdenofmanagingessentialdocumentsatthe

site,replacingpaperrecordswithdigitalones.

•Simplifycollectionofpatient-generateddataviaDigitalHealthTechnologies:thesensors,wearablesandotherdevicesthathavebeenavailablefor

sometimewithusagefurtherexpandedduringtheCOVID-19pandemic.

•ClarifyaneSourcestrategytohelpmakeavailable

offlinesystemswheredatacanbecollectedinan

asynchronousmannerandflowsintosystemsthroughintegrationmechanisms.

•Implementcentralmonitoringcapabilitiesin

responsetoincreasinguseofremotetechnologiesinclinicaltrials.Digitaltoolsarebeingdeployed,suchasplatformsformonitorsthatprovidemobilesitevisit

reportsandenablemobileinvestigationalproduct

managementthroughsimpleapplicationinterfaces

onhand-helddevicessuchastabletsandphones.Thisishelpingmeetuserswheretheyareinthisdigital

landscape.

Digitalizationofdataflowenablesfasterinsights

DigitalizationisresultinginvastincreasesintheavailabilityofpatientdatafromeSource(datacapturedelectronically),devices,andeCOA.TherearefourkeycomponentsusedatIQVIAtostreamlinedataflow:11

1.Digitization,whichfocusesoncreationofdigitaldataassets.Thiscanbedonebycompletingoperational

processesinadigitalworkflowapplication,suchas

thereviewofdataissues.Digitaldataassetsmay

alsobecreatedbydigitalizationofPDFs,hand-writtennotesandnaturallanguagenarratives,whichcreate

adigitalassetevenwhenamanualprocessisutilized.Thesearetransformedintodigitalassetsthatcanbeformatted,cleaned,andmergedwithotherdata.

2.Centralization,whichinvolvesstoringalldataina

warehouseordatalake,providingasinglerepository

foralldataassets.Thisstepstreamlinesdata

acquisition,appliesrigortodatacleaningandhandling,andeaseseffortsbyteamsacrossanorganizationto

usethesameresourcestosupportdecisions.

3.Standardization,whichrespondstotheexistenceof

assetsinmultiple,oftenunstructured,formats,suchasdoctors’notes,customerservicetasks,audiofiles

andimages.Theseformatsoftenapplydifferentrules,codesandnamingconventions.Fortheseassetstobecombinedandanalyzedasinglesetofbusinessrulesmustbeappliedbasedonenduserfeedback.

4.Automation,whichusesAI/MLtointerpretthe

dataandstreamlinedataflowandprocessesfrom

acquisitiontofinalanalysis.Thisenablesend-userstoquerydataassetswithdetailedquestionsandfollow-upsthatgeneratenearreal-timeresults.

5.Patienttokenization,whichanonymouslylinks

multipledisparatedatasetstogetheratthepatientlevel,providingmanufacturerswiththemost

comprehensiveviewofthepatientjourneywhilemaintainingaminimumriskofre-identification.

Callforcommondatamodelsandstandards

Clinicalresearchlacksstandarddefinitions,makingit

difficulttocreatescalable,digitaltransformation.There

areincreasingcallsfortheclinicalresearchsectortomovetowardcommondatamodels,buildingonlearningsfrom

8|DigitalTransformation:ANewEraforClinicalTrials

initiativessuchastheClinicalDataInterchangeStandardsConsortium(CDISC)studydatatabulationmodel(SDTM).Therehasalreadybeeninfrastructureinvestmentin

buildingcommondatamodels,aswellasbuildingend-

usertoolstoleveragedatarepositories,butmoreprogressisneeded.

Variousconsortiacontinuetoworkonstandards.

Thestandardscanoffermajorbenefits,including

improveddatacleaninginclinicaldatamanagement.

Somecompaniesarecustomizingthesestandardsto

achieveinnovation.Customizationandstandardizationshouldbebalancedtogaintheadvantagesofboth.

Lookingahead,AI/MLcanbeusedforstandardizedactivities,whilemanualeffortsarefocusedwhere

customizationorcustomAIsolutionsareneeded.

Animportantpieceofdigitaltransformationinvolves

continuousprocessesanddataflowtocreatebetter

insightsandprocesses.Whenthedataisflowingandalloperationalworkisinadigitalapplication,allelements

areconnected,enablingvisibilityintoongoingworkvia

dashboards.OneexampleisIQVIA’sCleanPatientTrackerdashboard,designedtogiveanoverviewofdatacleaningstatus,providinginsightsatproject,country,site,and

subjectlevel.Thisincludesadashboardtorapidlyidentifyissuesandtrends.

Remainingbottlenecks

Severalbottlenecksremain.Clinicaltrialsareincreasing

incomplexity,andtheamountofdatacollectedisrising.Forexample,infunctionaloutsourcingagreementswithmultipleCROs,inefficienciescanarisewhenvarious

elements–suchasdatamanagementorcentralized

monitoring–areeachoutsourcedtoadifferentCRO.Thisapproachrequiresconsiderableeffortforcoordination,

sometimesreferredtoasa‘collaborationtax.’Insome

situations,itcanworkbettertouseafull-serviceCROwithefficientprocessesthatareconnectedfromstarttofinish.Sometimes,creativesolutionsarerequired,suchasAPIsandjointaccessplatforms.

Industry-wideadoptionisanotherchallenge.Progress

isoftenmeasuredintermsoftheabilitytobuildanew

processandputitrapidlyintooperation,withadjustmentsbeingmadelater.Trulyeffectivechangedependson

alteringhowteammemberswork,withcarefulplanningtoreduceriskovertime—anapproachthattakeslongerupfrontandrequirespatience.

Conclusion

Lookingahead,IQVIAwillcontinueadvancingdigitaltransformationforsponsorswithleading-edgeAI/

MLsolutions.Thesesolutions(Figure5)willrapidly

navigatethevastvolumesofvariedindustry-specific

data,improvingclinicaltrialefficiencyandaccelerating

innovation.WithHealthcare-gradeAI,dataanalystswillincreasinglybeabletodiscoverpatternsandconnectionswithinandbetweendatasets,informingidentification

ofthenextbestactionforthetrialprocess.Usingtheseapproaches,dataanalystswillincreasinglybeableto

enhanceefficiencybyunravelingdatacomplexity,drivingactionableoutcomesandenhancingdecision-making.

Digitaloperatingmodelswillprovidecapabilitiesto

helpmeetsponsordemandstominimizethe‘white

space’intheclinicaldevelopmentprocess.Increased

automationandconnectivitywilladvancecontinuously-updatedoversightdashboardsforstudymanagement–protectingpatientsafetywhilepotentiallyreducing

clinicaldevelopmenttimelines.

Figure5:Afuturemodelfordigitaltransformationinclinicaltrials12

Healthcare,lifescience,

AIexpertise

Optimized

AI

models

AIinfra-Bench-

structuremarked

Cleansedandscrubbed

Precision

and

diversity

Domainexpertise

PrivacyandSecurity

Geographiccoverage

Regulatorycompliance

and

AdaptableAI

Unparalleled

quality

healthdata

|9

References

1.EasyM.TransformingClinicalTrialWorkflowswithAI.IQVIAblog.February22,2024.

/blogs/2024/02/transforming-clinical-trial-workflows-with-ai

2.DefinitionsfromonlinesourcesincludingMcKinsey,Accenture,HarvardBusinessSchool,Gartner,MIT

3.IansitiM,LakhaniKR.CompetingintheAgeofAI:StrategyandLeadershipWhenAlgorithmsandNetworksRuntheWorld.Book.2020.

/faculty/Pages/item.aspx?num=56633

4.Bain&Companypressrelease.40%ofpharmaexecutivesarebakingexpectedsavingsfromGenerativeAIinto2024budgets.February12,2024.

/about/media-center/press-releases/2024/40-

of-pharma-executives-are-baking-expected-savings-from-generative-ai-into-2024-budgets/

5.BuntzB.Two-thirdsofpharmacompaniesplantoupITinvestmentsin2024,surveyfinds.DrugDiscover

Trends.December14,2023.

/two-thirds-of-pharma-companies-plan-

to-up-it-investments-in-2024-survey-finds/

6.Googleblog.AlphaFold3predictsthestructureandinteractionsofalloflife’smolecules.May8,2024.

https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/

7.JayatungaMKp,AyersM,BruensL,JayanthD,MeierC.HowsuccessfulareAI-discovereddrugsinclinical

trials?Afirstanalysisandemerginglessons.DrugDiscovToday.2024Jun;29(6):104009.doi:10.1016/j.

drudis.2024.104009.Epub2024Apr30.PMID:38692505.

/science/article/pii/

S135964462400134X

8.BuntzB.InsideAmgen’sATOMICstrategytouseMLtoaccelerateclinicaltrials.January24,2024.

/amgen-atomic-clinical-trials-ml/

9.DiMasiJA,SmithZ,Oakley-GirvanI,MackinnonA,CostelloM,TenaertsP,GetzKA.AssessingtheFinancial

ValueofDecentralizedClinicalTrials.TherInnovRegulSci.2023Mar;57(2):209-219.doi:10.1007/s43441-022-00454-5.Epub2022Sep14.PMID:36104654;PMCID:PMC9473466.

/articles/

PMC9473466/

10.DiMasiJA,DirksA,SmithZ,ValentineS,GoldsackJC,MetcalfeT,GrewalU,LeyensL,ConradiU,KarlinD,

MaloneyL,GetzKA,HartogB.Assessingthenetfinancialbenefitsofemployingdigitalendpointsinclinicaltrials.ClinTranslSci.2024Aug;17(8):e13902.doi:10.1111/cts.13902.PMID:39072949;PMCID:PMC11284240.

/39072949/

11.MayerT,SteffenS,JacksonD.ControlYourDataFlow,ControlYourTrial.IQVIAWhitePaper.August2022.

/library/white-papers/control-your-data-flow-control-your-trial

12.IQVIAwebpage.AIYouCanTrust.IntroducingIQVIAHealthcare-GradeAI™.

/

solutions/innovative-models/artificial-intelligence-and-machine-learning

13.IQVIAwebpage.Maketherightconnections.

/about-us/iqvia-connected-intelligence

10|DigitalTransformation:ANewEraforClinicalTrials

Abouttheauthors

NATALIAKOTCHIE

SeniorVicePresident,AppliedDataScienceCenter

NataliaKotchieleadstheIQVIA

AppliedDataScienceCenter(ADSC)forR&DSolutions.TheADSCteam–comprising200+

datascientists,analytic,andfeasibilityexperts,across

NorthandSouthAmerica,Europe,andAsiaPacific–

createsdatainsightsandsupportstheirtranslation

tooperationstodriveimpactonstudies.Priortoher

currentrole,Natalia

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论