




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IQVIA
WhitePaper
DigitalTransformation:
ANewEraforClinicalTrials
NATALIAKOTCHIE,SeniorVicePresident,AppliedDataScienceCenter
CHRISTINALARSEN,Director,Innovation,DataSciences,Safety&MedicalRAJNEESHPATIL,VicePresident,DigitalStrategy&Innovation
SABRINASTEFFEN,VicePresident,HeadofInnovation&DataStrategyforDataSciences,Safety&Medical
Tableofcontents
Introduction3
Technologytrendsinclinicaldevelopment3
Designandplanning:Reducing‘whitespace’6
Earlyiterativeplanningandbenchmarking6
Real-timescenarioplanning7
Demandforreal-timedatafordecision-making7
Needforincreasedsitesupport7
Dataflowanddigitization,enablingfasterinsights8
Callforcommondatamodelsandstandards9
Remainingbottlenecks:‘Collaborationtax’andtheneedforindustry-wideadoption9
Conclusion9
References10
Abouttheauthors11
Introduction
Digitaltransformationishappeningallaroundineverydaylife.Smartphones,watchesandlaptopsconnectandsyncseamlessly;AI-drivenecommerceimprovesconsumer
experiencesforshopping,streamingentertainment
andsocialmedia.Intheretailsectorinparticular,digital
transformationisaddingvalueforcustomers.Operational
processesarebeingsuccessfullystandardized.One
exampleistheuseofstock-keepingunits(SKUs)that
appearasbarcodesorquickresponse(QR)codeson
retailproductlabels.Theseenableretailerstomanagethesupplychainandstockingprocess,increasing
productavailabilityforconsumers.Digitalbankinghasdisruptedtraditionalbankingmodelsbyimplementingstandardizationandcommondefinitions,improving
speed,qualityandgovernanceofinteractions,all
translatingintoabetterend-userexperience.
Theever-increasingcomplexityofclinicaltrialsimpedesefficiency.Asinotherindustries,digitaltransformation—includingdigitization,automationandartificial
intelligence/machinelearning—isimprovingefficiency,enhancingpatientexperiencesandunlockingcrucial
insightsacrosshealthcare.Electronicschedulingis
increasinglyavailableforhealth-relatedappointments,
withpatientportalsenablinghealthinformationtobe
self-managed.IntegrationofAIismakingclinicaltrials
moreaccessible,personalizedandtransparent,fosteringpatient-centrictrialenvironmentsandaccelerating
developmentofnewtherapies.
Overall,digitaltransformationhaspotentialtohelp
clinicaltrialtechnologiestobefutureready,bringing
valuetostakeholdersfrompatientsandsitestosponsorcompaniesandCROs.AuthoredbyIQVIAexperts,
thiswhitepaperprovidesahigh-leveloverviewofkey
elementstoconsiderwhendeployingdigitalcapabilitiesinclinicaltrials.
Technologytrendsinclinicaldevelopment
Currenttechnology-enabledtrendsinclinicaldevelopmentinclude:
•Improvingdecisionmaking,enablingfaster,evidence-baseddecisions
•OptimizingR&Dandclinicaltrials,whichincludes
useofdigitalizationandAI/MLinassetidentification,indicationprioritization,studydesignandplanning
andpatientenrollment;patient-centrictrialprocessesusingtelemedicine,wearables,sensorsanddevices;andreducingthepatientandsiteburdeninvolvedinclinicalresearch
•Enhanceddatacollectionandanalysis,including
remotedatacollectionandreviewwithaccessto
sourcedata;centralizedmonitoringofsiteandclinicaldataprocesses;andelectroniccaptureofdatathroughpatient-generateddatamechanisms,suchasePRO
•Streamliningprocesses/collaboration,involving
automationoftrialadministrativetaskstoimproveefficiencyandcompliance;processautomationto
reviewclinicaldatasignalsforearlyidentificationofrisks;andcollaborativedevelopmentofalgorithms
•Creatinginteroperableecosystemsbyimproving
integrationsbetweenclinicalsystemstooptimize
clinicalworkflows;usingcloud-basedplatformsfordatasharingandcollaborationbetweensponsors,
researchers,sitesandCROs;andenablingenhancedsponsoroversight.
|3
DIGITALTRANSFORMATIONDEFINITIONS
Digitalrepresentsusertouchpointsanddataassetsgeneratedfromsystems,computers,andapplications.Examplesofdigital
approachesincludehealth-relatedapps,
electronicdatacapture,wearables,sensors,devices,andoperationalclinicalsystems,
eConsent,ePRO,eCOA,andconnecteddevices.
Digitizationisaboutconvertinganalog
dataintodigitalform(suchasfromapaperdocumenttoaPDFfile).Digitalizationis
aboutusingtechtotransformbusinessprocesses(automatingtasks,etc).
Digitalizationinvolvesusingtechnologytotransformbusinessprocesses.Thisenablesdigitalassetstobemachine-readable,
comprisinganimportantpartofautomation.
Digitaltransformationistheintegrationofdigitaltechnologyintoallareasofa
business,fundamentallychanginghowitoperatesanddeliversvaluetocustomers.
Adigitaloperatingmodelcombines
multipledimensionsthatcollectivelyenabledigitalandtechnologycapabilitiestodeliverdefinedstrategicobjectives.Thisfocuses
onculture,customerjourneys,dataand
analytics,inadditiontothedimensionsofpeople,processandtechnology.
Thebenefitsofdigitalapproachesareillustratedin
Figure1,whichillustrateshow‘digitalnative’companies—wherevaluecreationinproducts,servicesanduserexperienceisbasedondigitaltechnologies—can
outstriptraditionalfirms.Thisisduetothefactthatthevaluethatscaledeliverseventuallytapersoffintraditionaloperatingmodels,butitcanclimbmuchhigherindigitaloperatingmodels.
Figure1:Digitaloperatingmodelstendtooutperformtraditionaloperatingmodels2,3
TraditionaloperatingmodelDigitaloperatingmodel
>
Numbersofusers
ForerunnersofinnovationinthehealthcareecosystemareshowninFigure2.Thesereflectaccelerationin
scientificinnovation,increasinguseofreal-worldevidencetodrivedecision-making,andthefactthatempowered
patientsareengaginginnewways.
“Examplesofdigitalapproaches
includehealth-relatedapps,
electronicdatacapture,wearables,sensors,devices,eConsent,ePRO,eCOA,andconnecteddevices”
4|DigitalTransformation:ANewEraforClinicalTrials
Figure2:Healthcareecosysteminnovationdrivinggrowthandpatientbenefits
Scientificinnovationisaccelerating
Real-worldevidenceisdrivingdecision-making
Empoweredpatientsareengaginginnewways
Innovationdrivers
NOVELTHERAPEUTICS
DIGITALPATIENTENGAGEMENT
TELEHEALTH
DIGITALTHERAPEUTICS
Artificial
DECISIONSUPPORT
MEDICALDEVICES
Intelligence
CLINICALWORKFLOW
REMOTEMONITORING
Pharmacompaniesareincreasinglyembracingdigital
transformationinanefforttounlockvalue(Figure3).
Currently,40-50%ofpharmacompaniesbenefitfromAI,4withtwooutofthreecompaniesplanningtoinvestmoreinIT.5ThesebenefitsincludethefactthatAIcanpredictbiomolecularstructures,6andAI-designedmolecules
recordphaseIsuccessratesof80-90%,comparedwith55-65%forthosesourcedusingtraditionalapproaches.7
Patientrecruitmentcanbeuptotwotimesfasterwhen
dataandpredictivemodelsareused,8anddecentralizedtrialshavebeenshowntoreducetrialcostsby2-3%,withafour-foldreturnoninvestmentusingmobiletechnology,telehealth,in-homevisitsandotherremoteapproaches.9Finally,useofdigitaloutcomemeasuresincreasesvalue
byprovidingpatientbenefits.10
Figure3:Currentpharmaindustryeffortstounlockvaluethroughdigitaltransformation
Decentralizedtrials
Reducetrialscostby2-3%withROIof4xusingmobiletech,telehealth,in-homevisits,etc.
•40-50%ofpharma
companiesbenefitfromAI
•2of3companiesplantoinvestmoreinIT
Successrate
Cost
Drugdiscovery
PhaseIsuccessrateof80-90%forAIdesignedmoleculesvs55-65%forthetraditionalapproach
Target
identification&validation
>
Compoundscreening
Lead
>identification&
optimization
>
Pre-clinicalstudies
>PhaseItrials
>PhaseIItrials
>PhaseIIItrials
>Regulatoryapproval
>Commercialization
Post-
>marketing
studies
>
Digitaloutcomes
Patientbenefitsusingnoveldigitalendpoints:apps,VR,etc.
Value
Biomolecularstructure
AIeffortlesslypredicts
structureofproteins,DNA,RNA,ligands,ions,etc.
Volume
Patientrecruitment
Upto2xfasterpatient
recruitmentthroughdata&predictivemodels
Speed
|5
Severalpossibleapproachestoderivingmorevalueforthevariousclinicaltrialstakeholdersusingadigitaloperating
modelareillustratedinFigure4.Whiletraditionalapproacheshavefocusedatfunction-specificandcross-functional
levels,digitaltransformationhasafocusoninteroperabilityandintegrationacrosstheenterpriseand,ultimately,acrossthevaluechain.Advancesareshownfromlefttoright,withfunctionalsilosbeingreimaginedasafullyinterconnected
valuenetwork.
Figure4:Potentialwaystoderivemorevalueforclinicaltrialstakeholders
FunctionspecificCross-functionalAcrossenterpriseAcrossvalue-network
>
↓
↓
Traditionalstate
Digitaloperationsstate–interoperabilityandintegrationfocus
Designandplanning:Reducing‘whitespace’
Sponsorsareeagertoreducethe‘whitespace’inclinicaldevelopment,definedasthetimetakentotransition
betweenresearchphasesthataffectscostsandtimelines.Earlyengagementwithsponsors,ideallyasmuchas
12monthsbeforestudystartup,canhelpaddressthis.
Benefitstothesponsorincludehavingtheabilitytomakedata-drivenstudydesigndecisions—suchaseligibility
criteriaandscheduleofactivities—basedonananalysisofkeyparameters,includingpatientandsiteburden,
whileaddressingthepotentialconsequencesofthesedecisionsonpatientrecruitmentandsiteparticipation.
Earlyiterativeplanningandbenchmarking
Usingthistimeforearlyiterativeplanningand
benchmarkingcanimprovedecision-makingand
savetimeatlaterstages.Iteratingondesignideasto
assessmultiplescenarioscanhelpsponsorsunderstandtheimpacttheirchoiceswillhavedownstream,providing
earlyinsightintopotentialoperationalrisksandthe
trade-offstoconsider.Forexample,useoftechnologymightimprovepatientparticipationbutwiththetrade-offofincreasingburdensometasksandaddedcosts
atsitelevel.IQVIAhasalibraryofdesignanalytics
andbenchmarksthatcanbeappliedatvariouspointsthroughoutthedesigndevelopmentcontinuum.Theseanalyticsprovideinsightsthatallowsponsorstomakeinformeddecisionsthatsupportprotocoloptimization.Additionally,protocolscanberapidlyassessedand
scoredforcomplexity,patientburdenandsiteburden,
whichgivessponsorsinsightsintowhichdesignelementsmightleadtooperationalchallenges.
6|DigitalTransformation:ANewEraforClinicalTrials
Earlydesignandoperationalplanningenabletheprotocoltobefinalizedattheearliestpossiblestage.Theremay
beoptionsforstreamlining,forexamplebyfocusingonprimaryandsecondaryendpointsandincludingonly
essentialexploratoryendpoints.Fromadatascience
perspective,itisvitaltotaketimeupfronttoidentify
potentialrisksandtoconsiderthebiostatisticalanalysesthatwillberunattheendofthestudytodetermine
factorsthatinfluencethedatacollectionstrategyanddigitalcapabilityselection.
Real-timescenarioplanning
Real-timescenarioplanningisincreasinglybeingusedforclinicaltrialplanning.Thishistoricallyincludedtheuseoftraditionalstatisticalapproaches,suchasMonteCarlo
simulationsforenrollmentratesandotherscenarios.
IQVIA’sstudyplanningandenrollmentoptimization
platformleveragesexpansive,globalreal-worlddataandAItoquicklybuildoptimalenrollmentstrategies.Itallowssponsorstoexplorearangeofscenarioswithenriched
informationaboutthecountriesunderconsiderationfortheirstudy.UsingcontemporarystatisticalmethodsandAI/MLcapabilities,alternativeoptionsaremodeledbasedontimeandcost,includingquickest,lowestcostand
balancedoptions.Representingafundamentalchange
inhowplanningisconducted,thisuseoftechnologyforscenario-baseddecisionmakingoffersarapid,highly-
accurateapproachtoidentifyingtheoptimalcountryandsiteselection,resultinginaclear,conciseplanthatmeetssponsorobjectives.
Asthestudyprogresses,real-timedatasupportsplan
revisionsanddevelopmentofnewprojections,helping
studyteamsgetaheadofpotentialchallengesandcoursecorrectasneeded.Usingtechnologytoconductreal-timeanalysescanaccelerateandinformdecision-making,
helpingmeetsponsorneedsforproactive,agileapproachestotheirstudyfeasibilityandenrollmentstrategies.
“Thereisademandfromsponsors tocompleteactivitieswithincreasedspeedandprecision,withcontinuousdataflowtosupportrapiddetectionoftrendsanddecision-making.”
Demandforreal-timedatafordecision-making
Overall,thereisademandfromsponsorstocompleteactivitieswithincreasedspeedandprecision,with
continuousdataflowtosupportrapiddetectionoftrendsanddecision-making.ThisdemandcanbemetbyIQVIA
digitalplatformsandapplicationsthatprovideautomationandconnectivity.Thereisalsoageneralshiftawayfrom
siteentereddata,likeelectronicdatacapture(EDC),infavorofpatientreporteddatafromconnecteddevicesandelectronicclinicaloutcomeassessment(eCOA),
whicheliminateslosttimewaitingfortranscription.Dataintegrationsautomaticallyfeeddatafromalldatasourcesintoadatarepositoryforaggregation.Asdataupdates,
itisautomaticallyconnectedtothedigitaloperationalprocesses,enablingcreationofcontinuously-updatedoversightdashboardsfortrialmanagement.
Digitizationeliminatestheneedformanualreviews,
reconciliationsandlogs,furtherimprovingtheway
dataflowsintheecosystemtoenableimprovementsindownstreamprocesses,suchasqualitymanagement,
compliancereviewofsites,patientsignaldetection,dataqualityissuesanddatamanagement.
|7
Needforincreasedsitesupport
Therehasbeenaproliferationinthenumberofsite-facingtechnologiesinrecentyears.Fromtechnologystrategy
andadoptionperspectives,theseposechallengesforsiteengagementandsiteenablement.Thereisaneedforsitesupportto:
•Reducetheadministrativeburdenforsitesandthus
improvesiteengagementfordocumentmanagementsystems.IQVIAofferselectronicinvestigatorsitefile
implementation,eBindersandeLogs.Thishelpsreducetheburdenofmanagingessentialdocumentsatthe
site,replacingpaperrecordswithdigitalones.
•Simplifycollectionofpatient-generateddataviaDigitalHealthTechnologies:thesensors,wearablesandotherdevicesthathavebeenavailablefor
sometimewithusagefurtherexpandedduringtheCOVID-19pandemic.
•ClarifyaneSourcestrategytohelpmakeavailable
offlinesystemswheredatacanbecollectedinan
asynchronousmannerandflowsintosystemsthroughintegrationmechanisms.
•Implementcentralmonitoringcapabilitiesin
responsetoincreasinguseofremotetechnologiesinclinicaltrials.Digitaltoolsarebeingdeployed,suchasplatformsformonitorsthatprovidemobilesitevisit
reportsandenablemobileinvestigationalproduct
managementthroughsimpleapplicationinterfaces
onhand-helddevicessuchastabletsandphones.Thisishelpingmeetuserswheretheyareinthisdigital
landscape.
Digitalizationofdataflowenablesfasterinsights
DigitalizationisresultinginvastincreasesintheavailabilityofpatientdatafromeSource(datacapturedelectronically),devices,andeCOA.TherearefourkeycomponentsusedatIQVIAtostreamlinedataflow:11
1.Digitization,whichfocusesoncreationofdigitaldataassets.Thiscanbedonebycompletingoperational
processesinadigitalworkflowapplication,suchas
thereviewofdataissues.Digitaldataassetsmay
alsobecreatedbydigitalizationofPDFs,hand-writtennotesandnaturallanguagenarratives,whichcreate
adigitalassetevenwhenamanualprocessisutilized.Thesearetransformedintodigitalassetsthatcanbeformatted,cleaned,andmergedwithotherdata.
2.Centralization,whichinvolvesstoringalldataina
warehouseordatalake,providingasinglerepository
foralldataassets.Thisstepstreamlinesdata
acquisition,appliesrigortodatacleaningandhandling,andeaseseffortsbyteamsacrossanorganizationto
usethesameresourcestosupportdecisions.
3.Standardization,whichrespondstotheexistenceof
assetsinmultiple,oftenunstructured,formats,suchasdoctors’notes,customerservicetasks,audiofiles
andimages.Theseformatsoftenapplydifferentrules,codesandnamingconventions.Fortheseassetstobecombinedandanalyzedasinglesetofbusinessrulesmustbeappliedbasedonenduserfeedback.
4.Automation,whichusesAI/MLtointerpretthe
dataandstreamlinedataflowandprocessesfrom
acquisitiontofinalanalysis.Thisenablesend-userstoquerydataassetswithdetailedquestionsandfollow-upsthatgeneratenearreal-timeresults.
5.Patienttokenization,whichanonymouslylinks
multipledisparatedatasetstogetheratthepatientlevel,providingmanufacturerswiththemost
comprehensiveviewofthepatientjourneywhilemaintainingaminimumriskofre-identification.
Callforcommondatamodelsandstandards
Clinicalresearchlacksstandarddefinitions,makingit
difficulttocreatescalable,digitaltransformation.There
areincreasingcallsfortheclinicalresearchsectortomovetowardcommondatamodels,buildingonlearningsfrom
8|DigitalTransformation:ANewEraforClinicalTrials
initiativessuchastheClinicalDataInterchangeStandardsConsortium(CDISC)studydatatabulationmodel(SDTM).Therehasalreadybeeninfrastructureinvestmentin
buildingcommondatamodels,aswellasbuildingend-
usertoolstoleveragedatarepositories,butmoreprogressisneeded.
Variousconsortiacontinuetoworkonstandards.
Thestandardscanoffermajorbenefits,including
improveddatacleaninginclinicaldatamanagement.
Somecompaniesarecustomizingthesestandardsto
achieveinnovation.Customizationandstandardizationshouldbebalancedtogaintheadvantagesofboth.
Lookingahead,AI/MLcanbeusedforstandardizedactivities,whilemanualeffortsarefocusedwhere
customizationorcustomAIsolutionsareneeded.
Animportantpieceofdigitaltransformationinvolves
continuousprocessesanddataflowtocreatebetter
insightsandprocesses.Whenthedataisflowingandalloperationalworkisinadigitalapplication,allelements
areconnected,enablingvisibilityintoongoingworkvia
dashboards.OneexampleisIQVIA’sCleanPatientTrackerdashboard,designedtogiveanoverviewofdatacleaningstatus,providinginsightsatproject,country,site,and
subjectlevel.Thisincludesadashboardtorapidlyidentifyissuesandtrends.
Remainingbottlenecks
Severalbottlenecksremain.Clinicaltrialsareincreasing
incomplexity,andtheamountofdatacollectedisrising.Forexample,infunctionaloutsourcingagreementswithmultipleCROs,inefficienciescanarisewhenvarious
elements–suchasdatamanagementorcentralized
monitoring–areeachoutsourcedtoadifferentCRO.Thisapproachrequiresconsiderableeffortforcoordination,
sometimesreferredtoasa‘collaborationtax.’Insome
situations,itcanworkbettertouseafull-serviceCROwithefficientprocessesthatareconnectedfromstarttofinish.Sometimes,creativesolutionsarerequired,suchasAPIsandjointaccessplatforms.
Industry-wideadoptionisanotherchallenge.Progress
isoftenmeasuredintermsoftheabilitytobuildanew
processandputitrapidlyintooperation,withadjustmentsbeingmadelater.Trulyeffectivechangedependson
alteringhowteammemberswork,withcarefulplanningtoreduceriskovertime—anapproachthattakeslongerupfrontandrequirespatience.
Conclusion
Lookingahead,IQVIAwillcontinueadvancingdigitaltransformationforsponsorswithleading-edgeAI/
MLsolutions.Thesesolutions(Figure5)willrapidly
navigatethevastvolumesofvariedindustry-specific
data,improvingclinicaltrialefficiencyandaccelerating
innovation.WithHealthcare-gradeAI,dataanalystswillincreasinglybeabletodiscoverpatternsandconnectionswithinandbetweendatasets,informingidentification
ofthenextbestactionforthetrialprocess.Usingtheseapproaches,dataanalystswillincreasinglybeableto
enhanceefficiencybyunravelingdatacomplexity,drivingactionableoutcomesandenhancingdecision-making.
Digitaloperatingmodelswillprovidecapabilitiesto
helpmeetsponsordemandstominimizethe‘white
space’intheclinicaldevelopmentprocess.Increased
automationandconnectivitywilladvancecontinuously-updatedoversightdashboardsforstudymanagement–protectingpatientsafetywhilepotentiallyreducing
clinicaldevelopmenttimelines.
Figure5:Afuturemodelfordigitaltransformationinclinicaltrials12
Healthcare,lifescience,
AIexpertise
Optimized
AI
models
AIinfra-Bench-
structuremarked
Cleansedandscrubbed
Precision
and
diversity
Domainexpertise
PrivacyandSecurity
Geographiccoverage
Regulatorycompliance
and
AdaptableAI
Unparalleled
quality
healthdata
|9
References
1.EasyM.TransformingClinicalTrialWorkflowswithAI.IQVIAblog.February22,2024.
/blogs/2024/02/transforming-clinical-trial-workflows-with-ai
2.DefinitionsfromonlinesourcesincludingMcKinsey,Accenture,HarvardBusinessSchool,Gartner,MIT
3.IansitiM,LakhaniKR.CompetingintheAgeofAI:StrategyandLeadershipWhenAlgorithmsandNetworksRuntheWorld.Book.2020.
/faculty/Pages/item.aspx?num=56633
4.Bain&Companypressrelease.40%ofpharmaexecutivesarebakingexpectedsavingsfromGenerativeAIinto2024budgets.February12,2024.
/about/media-center/press-releases/2024/40-
of-pharma-executives-are-baking-expected-savings-from-generative-ai-into-2024-budgets/
5.BuntzB.Two-thirdsofpharmacompaniesplantoupITinvestmentsin2024,surveyfinds.DrugDiscover
Trends.December14,2023.
/two-thirds-of-pharma-companies-plan-
to-up-it-investments-in-2024-survey-finds/
6.Googleblog.AlphaFold3predictsthestructureandinteractionsofalloflife’smolecules.May8,2024.
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/
7.JayatungaMKp,AyersM,BruensL,JayanthD,MeierC.HowsuccessfulareAI-discovereddrugsinclinical
trials?Afirstanalysisandemerginglessons.DrugDiscovToday.2024Jun;29(6):104009.doi:10.1016/j.
drudis.2024.104009.Epub2024Apr30.PMID:38692505.
/science/article/pii/
S135964462400134X
8.BuntzB.InsideAmgen’sATOMICstrategytouseMLtoaccelerateclinicaltrials.January24,2024.
/amgen-atomic-clinical-trials-ml/
9.DiMasiJA,SmithZ,Oakley-GirvanI,MackinnonA,CostelloM,TenaertsP,GetzKA.AssessingtheFinancial
ValueofDecentralizedClinicalTrials.TherInnovRegulSci.2023Mar;57(2):209-219.doi:10.1007/s43441-022-00454-5.Epub2022Sep14.PMID:36104654;PMCID:PMC9473466.
/articles/
PMC9473466/
10.DiMasiJA,DirksA,SmithZ,ValentineS,GoldsackJC,MetcalfeT,GrewalU,LeyensL,ConradiU,KarlinD,
MaloneyL,GetzKA,HartogB.Assessingthenetfinancialbenefitsofemployingdigitalendpointsinclinicaltrials.ClinTranslSci.2024Aug;17(8):e13902.doi:10.1111/cts.13902.PMID:39072949;PMCID:PMC11284240.
/39072949/
11.MayerT,SteffenS,JacksonD.ControlYourDataFlow,ControlYourTrial.IQVIAWhitePaper.August2022.
/library/white-papers/control-your-data-flow-control-your-trial
12.IQVIAwebpage.AIYouCanTrust.IntroducingIQVIAHealthcare-GradeAI™.
/
solutions/innovative-models/artificial-intelligence-and-machine-learning
13.IQVIAwebpage.Maketherightconnections.
/about-us/iqvia-connected-intelligence
10|DigitalTransformation:ANewEraforClinicalTrials
Abouttheauthors
NATALIAKOTCHIE
SeniorVicePresident,AppliedDataScienceCenter
NataliaKotchieleadstheIQVIA
AppliedDataScienceCenter(ADSC)forR&DSolutions.TheADSCteam–comprising200+
datascientists,analytic,andfeasibilityexperts,across
NorthandSouthAmerica,Europe,andAsiaPacific–
createsdatainsightsandsupportstheirtranslation
tooperationstodriveimpactonstudies.Priortoher
currentrole,Natalia
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羊水过多的护理课件
- 《中国传统戏曲》主题班会课件
- 老年人健康服务的基本原则
- 光电类专业复合型创新人才培养的实践基地建设策略
- 工业旅游的核心要素分析
- 2025年宁泌泰胶囊项目发展计划
- 协商协议合同范本
- 商品英文购买合同范例
- 商品车寄卖合同范本
- 双龙股合同范本
- 事故隐患内部报告奖励机制实施细则
- 《CT、MR的临床应用》课件
- 机械设计基础 课件全套 胡孟谦 01机械设计概论 -14机械创新设计
- 船舶水下辐射噪声指南 2025
- 2024年黑龙江哈尔滨市中考英语真题卷及答案解析
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 2025年中国配音行业市场现状、发展概况、未来前景分析报告
- 小学六年级数学行程应用题100道及答案解析
- 道路工程交通安全设施施工方案及保障措施
- 基于Python的瓜子二手车网数据采集与分析
- 2024年江苏护理职业学院单招职业适应性测试题库附答案
评论
0/150
提交评论