版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter
8Perfect
Multicollinearity
Perfect
multicollinearity
is
a
violation
of
ClassicaAssumption
VI.
It
is
the
case
where
the
variation
in
one
explanatoryvariable
can
be
completely
explained
by
movements
inanother
explanatory
variable.
Suchacase
between
two
independent
variables
wouldbe:Where
the
X’s
are
independent
variables
in:Perfect
Multicollinearity
(continued)Other
examples
of
perfect
linear
relationships:Real
world
examples?-Distance
between
two
cities.-Percent
of
voters
voting
in
favor
and
against
aproposition.Perfect
Multicollinearity
(continued)Perfect
Multicollinearity
(continued)
OLS
is
incapable
of
generating
estimates
of
regressioncoefficients
where
perfect
multicollinearity
is
prese
You
cannot
“hold
all
the
other
independent
variablesthe
equation
constant.”A
special
case
related
to
perfect
multicollinearity
isdominant
variable.
A
dominant
variable
is
so
highly
correlated
with
thedependent
variable
that
it
masks
the
effects
of
otherindependent
variables.
Don’t
confuse
dominant
variables
with
highly
signifivariables.Imperfect
Multicollinearity
Imperfect
multicollinearity:
linear
functionalrelationship
between
two
or
more
independent
variablesso
strong
that
it
can
significantly
affect
the
estimatiof
coefficients.
It
occurs
when
two
(or
more)independent
variables
areimperfectly
linearly
related,
as
in:Note
ui,
a
stochastic
error
term
in
Equation
(8.7)Imperfect
Multicollinearity
(continued)The
Consequences
of
MulticollinearityThemajorconsequencesofmulticollinearityare:1.Estimateswillremainunbiased.2.Thevariancesandstandarderrorsoftheestimate willincrease.3.Thecomputedt-scoreswillfall.4.Estimateswill esensitivetochangesin specification.5.Theoverallfitoftheequationandestimationof coefficientsofnonmulticollinearvariableswillunaffected.The
Consequences
ofMulticollinearity
(continued)Estimates
will
remain
unbiased.Even
if
an
equation
has
significant
multicollinearitthe
estimates
of
β
will
be
unbiased
if
first
sixClassical
Assumptions
hold.The
variances
and
standard
errors
of
the
estimateswill
increase.With
multicollinearity,
it
es
difficult
to
precisidentify
the
separate
effects
of
multicollinearvariables.OLS
is
still
BLUE
with
multicollinearity.But
the
“minimum
variances”
can
be
fairly
large.The
Consequences
ofMulticollinearity
(continued)The
Consequences
ofMulticollinearity
(continued)The
computed
t-scores
will
fall.
Multicollinearity
tends
to
decrease
t-scores
mainlybecause
of
the
formula
for
the
t-statistic.If
standard
error
increases,
t-score
must
fall.
Confidence
intervals
also
increase
because
standarderrors
increase.The
Consequences
ofMulticollinearity
(continued)4.Estimateswill esensitivetochangesinspecification.Adding/droppingvariablesand/orobservationswilloftencausemajorchangesinβestimateswhensignificantmulticollinearityexists.ThisoccursbecausewithseveremulticollinearityOLSisforcedtoemphasizesmalldifferencesbetweenvariablesinordertodistinguishtheeffectonemulticollinearvariable.The
Consequences
ofMulticollinearity
(continued)The
overall
fit
of
the
equation
and
estimation
of
tcoefficients
of
nonmulticollinear
variables
will
belargely
unaffected.
will
not
fall
much,
if
at
all,
with
significantmulticollinearity.
Combination
of
high
and
no
statistically
significanvariables
is
an
indication
of
multicollinearity.
It
is
possible
for
an
F-test
of
overall
significance
tothe
null
even
though
none
of
the
individual
t-tests
do.Two
Examples
of
the
Consequencesof
MulticollinearityExample:
Student
consumption
functionwhere:COiithroom=
annual
consumption
expenditures
of
thestudent
on
items
other
than
tuition
andand
board.Ydi=
annual
disposable e
(including
gifts)
of
thstudentLAi=
liquid
assets
(savings,
etc.)
of
theithstudeεi
=
stochastic
error
termTwo
Examples
of
the
Consequencesof
Multicollinearity
(continued)Estimate
Equation
8.9
with
OLS:Including
only
disposable
e:Two
Examples
of
the
Consequencesof
Multicollinearity
(continued)Example:
Demand
for
gasoline
by
statewhere:PCONi=
petroleum
consumption
in
the
ith
state(trillions
of
BTUs)=
urban
highway
miles
within
the
ith
state=
gasoline
tax
in
the
ith
state
(cents
pergallon)=
motor
vehicle
registrations
in
the
ith
stat(thousands)UHMi
TAXiREGiTwo
Examples
of
the
Consequencesof
Multicollinearity
(continued)Estimate
Equation
8.12
with
OLS:If
you
drop
UHM:The
Detection
of
MulticollinearityMulticollinearityexistsineveryequation.Importantquestionishowmuchexists.Theseveritycanchangefromsampletosample. Therearenogenerallyaccepted,truestatisticaltestmulticollinearity. Researchersdevelopageneralfeelingfortheseveritymulticollinearitybyexamininganumberofcharacteristics.Twocommononesare:SimplecorrelationcoefficientVarianceinflationfactorsHigh
Simple
Correlation
Coefficients
The
simple
correlation
coefficient,
r,
is
a
measure
othe
strength
and
direction
of
the
linear
relationship
ovariables.Range
of
r
is
+1
to
-1.Sign
of
r
indicates
the
direction
of
the
correlation.
If
r,
in
absolute
value,
is
high,
then
the
two
variablequite
correlated
and
multicollinearity
is
a
potentialproblem.High
Simple
CorrelationCoefficients
(continued)How
high
is
high?Some
researchers
select
arbitrary
number,
such
as
0.80
Better
answer
might
be
r
is
high
if
it
causesunacceptable
large
variances.
The
use
of
r
to
detect
multicollinearity
has
amajorlimitation:
groups
of
variables
acting
together
can
camulticollinearity
without
any
single
simple
correlaticoefficient
being
high.High
Variance
Inflation
Factors
(VIFs)
Variance
inflation
factor
(VIF)
isa
method
of
detectthe
severity
of
multicollinearity
by
looking
at
the
extto
which
a
given
explanatory
variable
can
be
explainedby
all
other
explanatory
variables
in
an
equation.
Suppose
the
following
model
with
K
independentvariables:
Need
to
calculate
a
VIF
for
each
of
the
K
independentvariables.High
Variance
InflationFactors
(VIFs)
(continued)To
calculate
VIFs:Run
an
OLS
regression
that
has
Xi
as
a
function
ofall
the
other
explanatory
variables
in
the
equatio2.CalculatethevarianceinflationfactorforHigh
Variance
InflationFactors
(VIFs)
(continued)
The
higher
the
VIF,
the
more
severe
the
effects
ofmulticollinearity.But,
there
are
no
formal
critical
VIF
values.
A
common
rule
of
thumb:
if
VIF
>
5,
multicollinearity
isevere.
It’s
possible
to
have
large
multicollinearity
effecthaving
a
large
VIF.Remedies
for
MulticollinearityRemedy1:Donothing Existenceofmulticollinearitymightnotmeananythin(i.e.coefficientsstillsignificantandmeetexpectat Ifyoudeleteamulticollinearvariablethatbelongsimodel,youcausespecificationbias. Everytimearegressionisrerun,weriskencounteringspecificationthataccidentlyworksonthespecificsample.Remedies
for
Multicollinearity
(continueRemedy
2:
Drop
a
redundant
variable
Two
or
more
variables
in
an
equation
measuringessentially
the
same
thing
might
be
called
redundant.
Dropping
redundant
variable
is
nothing
more
thanmaking
up
for
a
specification
error.
In
case
of
severe
multicollinearity,
it
makes
no
statidifference
which
variable
is
dropped.
The
theoretical
underpinnings
of
model
should
be
thebasis
for
dropping
a
redundant
variable.Remedies
for
Multicollinearity
(continueExample:
Student
consumption
function:Remedies
for
Multicolli
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑垃圾分流装置设计方案
- 城市生态景观整体规划方案
- 城市公共艺术设施设计方案
- 城市排水系统数字化改造方案
- 防腐涂装施工环境控制方案
- 防腐蚀工程效果评估方案
- 排水系统运行风险评估方案
- 圣诞网络活动策划方案(3篇)
- 酒吧吊顶施工方案(3篇)
- 发廊活动提案策划方案(3篇)
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及参考答案详解1套
- 思政教师培训心得课件
- 2025年广东省生态环境厅下属事业单位考试真题附答案
- 2026年安徽省公务员考试招录7195名备考题库完整参考答案详解
- 【地理】期末模拟测试卷-2025-2026学年七年级地理上学期(人教版2024)
- LoRa技术教学课件
- 统筹发展与安全课件
- 弱电项目实施管理方案
- 2025年山西省公务员考试《申论》试题及答案解析(县乡卷)
- 2025年法考客观题真题回忆版(含答案)
- 2025中央广播电视总台招聘144人笔试历年题库附答案解析
评论
0/150
提交评论