第06讲 事件的相互独立性、条件概率及全概率公式与贝叶斯公式(学生版)-2025版高中数学一轮复习考点帮_第1页
第06讲 事件的相互独立性、条件概率及全概率公式与贝叶斯公式(学生版)-2025版高中数学一轮复习考点帮_第2页
第06讲 事件的相互独立性、条件概率及全概率公式与贝叶斯公式(学生版)-2025版高中数学一轮复习考点帮_第3页
第06讲 事件的相互独立性、条件概率及全概率公式与贝叶斯公式(学生版)-2025版高中数学一轮复习考点帮_第4页
第06讲 事件的相互独立性、条件概率及全概率公式与贝叶斯公式(学生版)-2025版高中数学一轮复习考点帮_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Page第06讲事件的相互独立性、条件概率及全概率公式与贝叶斯公式(5类核心考点精讲精练)1.5年真题考点分布5年考情考题示例考点分析关联考点2024年新Ⅱ卷,第18题,17分独立事件的乘法公式利用对立事件的概率公式求概率求离散型随机变量的均值2023年新I卷,第21题,12分利用全概率公式求概率求离散型随机变量的均值2023年新Ⅱ卷,第12题,5分独立事件的乘法公式独立重复试验的概率问题利用互斥事件的概率公式求概率2023年全国甲卷(理),第6题,5分计算条件概率无2022年新I卷,第20题,12分计算条件概率独立性检验解决实际问题2022年新Ⅱ卷,第19题,12分计算条件概率频率分布直方图的实际应用由频率分布直方图估计平均数利用对立事件的概率公式求概率2021年新I卷,第8题,5分独立事件的判断无2020年全国甲卷(理),第19题,12分独立事件的实际应用及概率无2.命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度中等或偏难,分值为5-12分【备考策略】1.理解、掌握事件的相互独立性关系及其辨析2.会独立事件的乘法公式计算3.会条件概率的计算4.会全概率及贝叶斯概率的计算【命题预测】本节内容是新高考卷的必考内容,一般结合条件概率、全概率及贝叶斯概率综合考查,需重点强化复习知识讲解事件的相互独立性(1)定义:设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质:①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).②如果事件A与B相互独立,那么A与eq\x\to(B),eq\x\to(A)与B,eq\x\to(A)与eq\x\to(B)也相互独立.互斥事件强调两事件不可能同时发生,即P(AB)=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.条件概率条件概率的定义条件概率的性质已知B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B).当P(B)>0时,我们有P(A|B)=eq\f(PA∩B,PB).(其中,A∩B也可以记成AB)类似地,当P(A)>0时,A发生时B发生的条件概率为P(B|A)=eq\f(PAB,PA)(1)0≤P(B|A)≤1,(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)P(B|A)与P(A|B)易混淆为等同前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=eq\f(PAB,PA)求P(B|A)基本事件法借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=eq\f(nAB,nA)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,BΩ=B(A1+A2+…+An)=BA1+BA2+…+BAn,有P(B)=,此公式为全概率公式.(1)计算条件概率除了应用公式P(B|A)=eq\f(P(AB),P(A))外,还可以利用缩减公式法,即P(B|A)=eq\f(n(AB),n(A)),其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.(2)全概率公式为概率论中的重要公式,它将对一个复杂事件A的概率的求解问题,转化为了在不同情况下发生的简单事件的概率的求和问题.贝叶斯公式一般地,设是一组两两互斥的事件,有且,则对任意的事件有考点一、独立事件的判断1.(2024·上海·高考真题)有四种礼盒,前三种里面分别仅装有中国结、记事本、笔袋,第四个礼盒里面三种礼品都有,现从中任选一个盒子,设事件:所选盒中有中国结,事件:所选盒中有记事本,事件:所选盒中有笔袋,则(

)A.事件与事件互斥 B.事件与事件相互独立C.事件与事件互斥 D.事件与事件相互独立2.(2021·全国·高考真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则(

)A.甲与丙相互独立 B.甲与丁相互独立C.乙与丙相互独立 D.丙与丁相互独立3.(2023·吉林通化·梅河口市第五中学校考模拟预测)有6个大小相同的小球,其中1个黑色,2个蓝色,3个红色.采用放回方式从中随机取2次球,每次取1个球,甲表示事件“第一次取红球”,乙表示事件“第二次取蓝球”,丙表示事件“两次取出不同颜色的球”,丁表示事件“与两次取出相同颜色的球”,则(

)A.甲与乙相互独立 B.甲与丙相互独立C.乙与丙相互独立 D.乙与丁相互独立1.(2024·广东广州·模拟预测)掷出两枚质地均匀的骰子,记事件“第一枚点数小于3”,事件“第二枚点数大于4”,则与关系为(

)A.互斥 B.互为对立 C.相互独立 D.相等2.(24-25高二上·湖北·阶段练习)抛掷一红一绿两颗质地均匀的六面体骰子,记录骰子朝上面的点数,若用表示红色骰子的点数,用表示绿色骰子的点数,用表示一次试验结果,设事件;事件:至少有一颗点数为5;事件;事件.则下列说法正确的是(

)A.事件与事件为互斥事件 B.事件与事件为互斥事件C.事件与事件相互独立 D.事件与事件相互独立3.(24-25高三上·陕西安康·开学考试)(多选)一个不透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则(

)A.事件与事件是互斥事件 B.事件与事件是对立事件C.事件与事件是相互独立事件 D.事件与事件是互斥事件4.(2024·广东珠海·一模)(多选)设A,B为随机事件,且,是A,B发生的概率.,则下列说法正确的是(

)A.若A,B互斥,则B.若,则A,B相互独立C.若A,B互斥,则A,B相互独立D.与相等考点二、独立事件的乘法公式1.(2024·辽宁·模拟预测)某疾病全球发病率为,该疾病检测的漏诊率(患病者判定为阴性的概率)为,检测的误诊率(未患病者判定为阳性的概率)为,则某人检测成阳性的概率约为(

)A. B. C. D.2.(2024·辽宁·模拟预测)甲、乙二人下围棋,若甲先着子,则甲胜的概率为0.6,若乙先着子,则乙胜的概率为0.5,若采取三局两胜制(无平局情况),第一局通过掷一枚质地均匀的硬币确定谁先着子,以后每局由上一局负者先着子,则最终甲胜的概率为(

)A.0.5 B.0.6 C.0.57 D.0.5753.(2024·天津和平·二模)为铭记历史、缅怀先烈,增强爱国主义情怀,某学校开展共青团知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,每个人回答正确与否互不影响.已知甲回答正确的概率为,甲、丙两人都回答正确的概率是,乙、丙两人都回答正确的概率是.若规定三名同学都回答这个问题,则甲、乙、丙三名同学中至少有1人回答正确的概率为;若规定三名同学抢答这个问题,已知甲、乙、丙抢到答题机会的概率分别为,,,则这个问题回答正确的概率为.4.(2022·全国·高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则(

)A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大1.(2024·河南郑州·三模)拋掷一枚质地均匀的正四面骰子(骰子为正四面体,四个面上的数字分别为1,2,3,4),若骰子与桌面接触面上的数字为1或2,则再抛郑一次,否则停止抛掷(最多抛掷2次).则抛掷骰子所得的点数之和至少为4的概率为(

)A. B. C. D.2.(2024·吉林·模拟预测)中国成功搭建了国际首个通信与智能融合的6G外场试验网,并形成贯通理论、技术、标准和应用的全产业链创新环境.某科研院在研发6G项目时遇到了一项技术难题,由甲、乙两个团队分别独立攻关.已知甲、乙团队攻克该项技术难题的概率分别为0.8和0.7,则该科研院攻克这项技术难题的概率为.3.(2024·湖南益阳·一模)在某世界杯足球赛上,a,b,c,d四支球队进入了最后的比赛,在第一轮的两场比赛中,a对b,c对d,然后这两场比赛的胜者将进入冠亚军决赛,这两场比赛的负者比赛,决出第三名和第四名.若a对b、a对d的胜率均为0.6,a对c、c对d的胜率均为0.5,则a获得冠军的概率为.考点三、条件概率的计算1.(2023·全国·高考真题)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为(

)A.0.8 B.0.6 C.0.5 D.0.42.(2024·天津·高考真题)五种活动,甲、乙都要选择三个活动参加.甲选到的概率为;已知乙选了活动,他再选择活动的概率为.3.(2022·天津·高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为;已知第一次抽到的是A,则第二次抽取A的概率为4.(2024·安徽安庆·三模)(多选)已知,,,则下列命题正确的是(

)A. B.C. D.5.(2022·全国·高考真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:;(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.附,0.0500.0100.001k3.8416.63510.8281.(2024·广西·模拟预测)在某电路上有C,D两个独立工作的元件,每次通电后,需要更换C元件的概率为0.3,需要更换D元件的概率为0.2,则在某次通电后C,D有且只有一个需要更换的条件下,C需要更换的概率是(

)A. B. C. D.2.(2024·广东江门·模拟预测)现有1000个苹果,其中900个是大果,100个是小果,现想用一台水果分选机筛选出来.已知这台分选机把大果筛选为小果的概率为,把小果筛选为大果的概率为经过一轮筛选后,现在从这台分选机筛选出来的“大果”里面随机抽出一个,则这个“大果”是真的大果的概率为(

)A. B. C. D.3.(2024·四川成都·模拟预测)(多选)随机事件,满足,,,则下列说法正确的是(

)A. B.C. D.4.(2024·江西新余·模拟预测)小金、小郅、小睿三人下围棋,已知小金胜小郅、小睿两人的胜率均为,小郅胜小睿的胜率为,比赛采用三局两胜制,第一场比赛等概率选取一人轮空,剩余两人对弈,胜者继续与上一场轮空者比赛,另一人轮空.以此类推,直至某人赢得两场比赛,则其为最终获胜者.(1)若第一场比赛小金轮空,则需要下第四场比赛的概率为多少?(2)求最终小金获胜的概率.(3)若已知小郅第一局未轮空且获胜,在此条件下求小金最终获胜的概率(请用两种方法解答).5.(23-24高二下·山西临汾·期中)某工厂生产一批机器零件,现随机抽取100件对某一项性能指标进行检测,得到一组数据,如下表:性能指标6677808896产品件数102048193(1)求该项性能指标的样本平均数的值.若这批零件的该项指标X近似服从正态分布,其中近似为样本平均数的值,,试求的值.(2)若此工厂有甲、乙两台机床加工这种机器零件,且甲机床的生产效率是乙机床的生产效率的2倍,甲机床生产的零件的次品率为0.02,乙机床生产的零件的次品率为0.03,现从这批零件中随机抽取一件.①求这件零件是次品的概率;②若检测出这件零件是次品,求这件零件是甲机床生产的概率;③在①的条件下,若从这批机器零件中随机抽取300件,每次抽取的结果相互独立,记抽出的零件是次品,且该项性能指标恰好在内的零件个数为,求随机变量的数学期望(精确到整数).参考数据:若随机变量服从正态分布,则,,.考点四、全概率公式及应用1.(2024·河南·模拟预测)已知,,,若,则(

)A. B. C. D.2.(2024·上海·高考真题)某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,已知小申完成题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.3.(2024·内蒙古包头·三模)设某工厂购进10盒同样规格的零部件,已知甲厂、乙厂、丙厂分别生产了其中的4盒、3盒、3盒.若甲、乙、丙三个厂家生产该种零部件的次品率依次为,,,现从这10盒中任取一盒,再从这盒中任取一个零部件,则取得的零部件是次品的概率为(

)A.0.08 B.0.075 C.0.07 D.0.064.(2024·广东茂名·模拟预测)(多选)某社区有甲、乙两队社区服务小组,其中甲队有3位男士、2位女士,乙队有2位男士、3位女士.现从甲队中随机抽取一人派往乙队,分别以事件和表示从甲队中随机抽取一人抽到的是男士和女士;以事件B表示从乙队(甲队已经抽取一人派往乙队)中随机抽取一人抽到的是男士,则(

)A. B. C. D.5.(2023·全国·高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第次投篮的人是甲的概率;(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.1.(2024·贵州贵阳·二模)某汽修厂仓库里有两批同种规格的轮胎,第一批占,次品率为;第二批占,次品率为.现从仓库中任抽取1个轮胎,则这个轮胎是合格品的概率是(

)A.0.046 B.0.90 C.0.952 D.0.9542.(2024·安徽·一模)有三台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%,任取一个零件,则它是次品的概率(

)A.0.054 B.0.0535 C.0.0515 D.0.05253.(2024·河南·二模)(多选)现有编号分别为的三个盒子,其中盒中共20个小球,其中红球6个,盒中共20个小球,其中红球5个,盒中共30个小球,其中红球6个.现从所有球中随机抽取一个,记事件:“该球为红球”,事件:“该球出自编号为的盒中”,则下列说法正确的是(

)A.B.C.D.若从所有红球中随机抽取一个,则该球来自盒的概率最小4.(2024·江苏宿迁·三模)某批零件一级品的比例约为,其余均为二级品.每次使用一级品零件时肯定不会发生故障,而在每次使用二级品零件时发生故障的概率为.某项任务需要使用该零件次(若使用期间出现故障则换一件使用).(1)某零件在连续使用3次没有发生故障的条件下,求该零件为一级品的概率;(2)当时,求发生故障次数的分布列及期望.考点五、贝叶斯概率公式及应用1.(2024·湖南邵阳·三模)甲、乙两个工厂代加工同一种零件,甲加工的次品率为,乙加工的次品率为,加工出来的零件混放在一起.已知甲、乙工厂加工的零件数分别占总数的,,任取一个零件,如果取到的零件是次品,则它是乙工厂加工的概率为(

)A. B. C. D.2.(2024·江西上饶·模拟预测)越来越多的人喜欢参加户外极限运动,据调查数据显示,两个地区分别有的人参加户外极限运动,两个地区的总人口数的比为.若从这两个地区中任意选取一人,则此人参加户外极限运动的概率为;若此人参加户外极限运动,则此人来自地区的概率为,那么(

)A. B.C. D.3.(2024·贵州遵义·三模)(多选)英国数学家贝叶斯在概率论研究方面成就显著,经他研究,随机事件A,B存在如下关系:.现有甲、乙、丙三台车床加工同一件零件,甲车床加工的次品率为,乙车床加工的次品率,丙车床加工的次品率为,加工出来的零件混放在一起,且甲、乙、丙3台车床加工的零件数分别占总数的,,,设事件,,分别表示取到的零件来自甲、乙、丙车床,事件B表示任取一个零件为次品,则下列说法正确的是(

)A. B.C. D.4.(2024·福建厦门·模拟预测)甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任选一个箱子,再从中随机摸出一球.(1)求摸出的球是黑球的概率;(2)若已知摸出的球是黑球,用概率公式判断该球取自哪个箱子的可能性更大.1.(2024·山东济南·三模)(多选)某同学投篮两次,第一次命中率为.若第一次命中,则第二次命中率为;若第一次未命中,则第二次命中率为.记为第i次命中,X为命中次数,则(

)A. B. C. D.2.(2024·广东佛山·模拟预测)(多选)中国象棋是一种益智游戏,也体现博大精深的中国文化.某学校举办了一次象棋比赛,李明作为选手参加.除李明之外的其他选手中,甲、乙两组的人数之比为,李明与甲、乙两组选手比赛获胜的概率分别为0.6,0.5.从甲、乙两组参赛选手中随机抽取一位棋手与李明比赛,下列说法正确的是(

)A.李明与甲组选手比赛且获胜的概率为B.李明获胜的概率为C.若李明获胜,则棋手来自甲组的概率为D.若李明获胜,则棋手来自乙组的概率为3.(2024·海南省直辖县级单位·一模)英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件A,B存在如下关系:.若某地区一种疾病的患病率是0.05,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为95%,即在被检验者患病的前提下用该试剂检测,有95%的可能呈现阳性;该试剂的误报率为0.5%,即在被检验者未患病的情况下用该试剂检测,有0.5%的可能会误报阳性.现随机抽取该地区的一个被检验者,已知检验结果呈现阳性,则此人患病的概率为(

)A. B. C. D.4.(2024·安徽合肥·模拟预测)春夏之交因昼夜温差大,细菌、病毒等活跃,是流感高发季节.某校高二年级某组团统计了流感暴发前的半个月与流感暴发后的半个月的学生请假情况,得到如下数据:因发烧请假非发烧请假合计流感暴发前1030流感暴发后30合计70(1)完成列联表,并依据的独立性检验,判断能否认为流感暴发对请假的同学中发烧的人数有影响.(2)后经过了解,在全校因发烧请假的同学中男生占比为,且的因发烧请假的男生需要输液治疗,的因发烧请假的女生需要输液治疗.学校随机选择一名因发烧请假在医院输液的同学进行慰问,求这名同学是女生的概率.附:.0.050.010.0013.8416.63510.828一、单选题1.(2024·陕西安康·模拟预测)不透明的袋子里装有标号分别为1,2,3,4,5的5个完全相同的乒乓球,有放回地依次取出2个球,设事件{2个球的标号互不相同},事件{取出5号球},则(

)A. B. C. D.2.(2024·重庆沙坪坝·模拟预测)假设是两个事件,且,则下列结论一定成立的是(

)A.B.C.D.3.(2024·山东菏泽·模拟预测)随着我国铁路的发展,列车的正点率有了显著的提高.据统计,途经某车站的只有和谐号和复兴号列车,且和谐号列车的列次为复兴号列车的列次的2倍,和谐号的正点率为0.98,复兴号的正点率为0.99,今有一列车未正点到达该站,则该列车为和谐号的概率为(

)A.0.2 B.0.5 C.0.6 D.0.84.(2024·黑龙江哈尔滨·一模)有3台车床加工同一型号的零件,第台加工的次品率分别为,加工出来的零件混放在一起.已知第台车床加工的零件数的比为,现任取一个零件,记事件“零件为第i台车床加工”,事件“零件为次品”,则(

)A.0.2 B.0.05 C. D.二、多选题5.(2024·吉林长春·模拟预测)设、是一个随机试验中的两个事件,若,,,则下列选项一定正确的是(

)A. B.C. D.6.(2024·广西柳州·模拟预测)已知随机事件A,B发生的概率分别为,,下列说法正确的是(

).A.若,则A,B相互独立 B.若A,B互斥,则A,B不相互独立C.若,则 D.若,则7.(2024·江苏镇江·三模)同时投掷甲、乙两枚质地均匀的硬币,记“甲正面向上”为事件,“乙正面向上”为事件,“甲、乙至少一枚正面向上”为事件,则下列判断正确的是(

)A.与相互对立 B.与相互独立C. D.8.(2024·云南大理·模拟预测)假设是两个事件,且,,,则(

)A. B. C. D.三、填空题9.(2024·浙江·模拟预测)已知,,,则.10.(23-24高二下·广东广州·期末)某药厂用甲、乙两地收购而来的药材加工生产出一种中成药,这两个地区的供货量分别占,,且用这两地的药材能生产出优等品的概率分别为,,现从该厂产品中任意取出一件产品,则此产品是优等品的概率为.一、单选题1.(2024·上海奉贤·三模)如果分别是的对立事件,下列选项中不能判断件与事件相互独立的是(

)A. B.C. D.2.(2024·河南南阳·三模)甲袋中有3个红球,3个白球和2个黑球;乙袋中有2个红球,2个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以,,表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以表示事件“取出的是白球”,则下列结论中不正确的是(

)A.事件,,是两两互斥的事件 B.事件与事件为相互独立事件C. D.二、多选题3.(2024·重庆渝中·模拟预测)已知随机事件满足,则下列说法正确的是(

)A.若与互相独立,则B.若,则与互相独立C.若与互斥,则D.若,则与互斥4.(2024·云南·模拟预测)现有颜色为红、黄、蓝的三个箱子,其中红色箱子内装有2个红色球,1个黄色球和1个蓝色球;黄色箱子内装有2个红色球,1个蓝色球;蓝色箱子内装有3个红色球,2个黄色球.若第一次先从红色箱子内随机抽取1个球,将取出的球放入与球同色的箱子中,第二次再从刚才放入与球同色的这个箱子中任取一个球,则下列说法正确的是(

)A.若第一次抽到黄色球,那么第二次抽到蓝色球的概率为B.第二次抽到蓝色球的概率为C.如果第二次抽到的是蓝色球,则它最有可能来自红色箱子D.如果还需将5个不同的小球放入这三个箱子内,每个箱子至少放1个,则不同的放法共有150种三、填空题5.(2024·江苏苏州·三模)已知,则.6.(2024·江西新余·模拟预测)设随机变量的分布列如图:01若的数学期望为,事件:或,事件:或,则;.7.(2024·天津河西·模拟预测)甲、乙两名同学在电脑上进行答题测试,每套测试题可从题库中随机抽取.在一轮答题中,如果甲单独答题,能够通过测试的概率是,如果乙单独答题,能够通过测试的概率是.若甲单独答题三轮,则甲恰有两轮通过测试的概率为;若在甲,乙两人中任选一人进行测试,则通过测试的概率为.(结果均以既约分数表示)四、解答题8.(2024·浙江·三模)将除颜色外完全相同的红球2个、白球3个放入一盲盒(一种具有随机属性的玩具盒子),现从中不放回取球.(1)若每次取一个球,求:(ⅰ)前两次均取到红球的概率;(ⅱ)第2次取到红球的概率;(2)若从中取出两个球,已知其中一个球为红球,求:(ⅰ)另一个也为红球的概率;(ⅱ)若你现在可以选择从剩下的球中随机取一个球来替换另一个球,如果从提高取到红球的可能性出发,你是选择换还是不换?试说明理由.9.(2024·河南信阳·模拟预测)袋中有8个除颜色外完全相同的小球,其中1个黑球,3个白球,4个红球.(1)若从袋中一次性取出两个小球,即取到的红球个数为,求的分布列和数学期望;(2)若从袋中不放回的取3次,每次取一个小球,取到黑球记0分,取到白球记2分,取到红球记4分,在最终得分为8分的条件下,恰取到一个红球的概率.10.(2024·安徽·模拟预测)现需要抽取甲、乙两个箱子的商品,检验其是否合格.其中甲箱中有9个正品和1个次品;乙箱中有8个正品和2个次品.从这两个箱子中随机选择一个箱子,再从该箱中等可能抽出一个商品,称为首次检验.将首次检验的商品放回原来的箱子,再进行二次检验,若两次检验都为正品,则通过检验.首次检验选到甲箱或乙箱的概率均为.(1)求首次检验抽到合格产品的概率;(2)在首次检验抽到合格产品的条件下,求首次检验选到的箱子为甲箱的概率;(3)将首次检验抽出的合格产品放回原来的箱子,继续进行二次检验时有如下两种方案:方案一,从首次检验选到的箱子中抽取;方案二,从另外一个箱子中抽取.比较两个方案,哪个方案检验通过的概率大.1.(全国·高考真题)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论