版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
林芝2025届高考数学三模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.02.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.3.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.84.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.6.设为非零实数,且,则()A. B. C. D.7.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.8.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432 B.576 C.696 D.9609.曲线上任意一点处的切线斜率的最小值为()A.3 B.2 C. D.110.已知函数且,则实数的取值范围是()A. B. C. D.11.已知是等差数列的前项和,,,则()A.85 B. C.35 D.12.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且二、填空题:本题共4小题,每小题5分,共20分。13.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为14.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.15.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.16.若,则的展开式中含的项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.18.(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.19.(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.20.(12分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.21.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.22.(10分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.2、D【解析】
由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.3、A【解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.4、D【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.5、D【解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.6、C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.7、B【解析】
直接代入检验,排除其中三个即可.【详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.8、B【解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.【详解】首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为种.故选:B.【点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.9、A【解析】
根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.10、B【解析】
构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.11、B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.12、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且α+β=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.14、【解析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.15、【解析】
取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.16、【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2).【解析】
根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值.【详解】因为抛物线C的方程为,所以F的坐标为,设,因为圆M与x轴、直线l都相切,l平行于x轴,所以圆M的半径为,点,则直线PF的方程为,即,所以,又m,,所以,即,所以E的方程为,,设,,,由知,点Q处的切线的斜率存在,由对称性不妨设,由,所以,,所以,,所以,.令,,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即AB取得最小值此时.【点睛】本题考查了直线和抛物线的位置关系,以及利用导数求函数最值的关系,考查了运算能力和转化能力,属于难题.18、(1).(2)见解析.【解析】试题分析:(1)设根据题意得到,化简得到轨迹方程;(2)设,,,,构造函数研究函数的单调性,得到函数的最值.解析:(1)因为抛物线的方程为,所以的坐标为,设,因为圆与轴、直线都相切,平行于轴,所以圆的半径为,点,则直线的方程为,即,所以,又,所以,即,所以的方程为.(2)设,,,由(1)知,点处的切线的斜率存在,由对称性不妨设,由,所以,,所以,,所以.令,,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即取得最小值,此时.点睛:求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.19、(1)1;(2)见解析【解析】
(1)设,,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【详解】解:(1)设,,将直线代入中整理得:,∴,,∴,解得:.(2)同(1)假设,,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.20、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,由比例可得∥,进而得线面平行;(Ⅱ)过点作的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.试题解析:(Ⅰ)证明:连接,梯形,,易知:;又,则∥;平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 季节性施工措施
- 2025至2030年中国铁制炭炉行业投资前景及策略咨询研究报告
- 2025至2030年中国牛油脂肪酸行业投资前景及策略咨询研究报告
- 办公楼室内装饰装修项目工程施工方案计划
- 2025至2030年中国力骨式网带行业投资前景及策略咨询研究报告
- 2025至2030年中国人造石英晶体材料行业投资前景及策略咨询研究报告
- 健身房装修施工方案
- 2025年造价咨询公司管理制度范文
- 校园雨水利用与污水处理方案
- 2024年中国老古酒市场调查研究报告
- 艺考培训宣讲
- 华东师范大学《法学导论I》2022-2023学年第一学期期末试卷
- 小王子-英文原版
- 学校老师打孩子处理协议书(2篇)
- 垫付协议合同范例
- 2024年高一语文期末复习训练-非连续性文本阅读
- 中华人民共和国建筑法
- 统编版2024-2025学年语文五年级上册日积月累专项训练练习题
- 基于机器学习的供应链风险预测
- 阜阳师范大学《法学概论》2023-2024学年期末试卷
- 湘教版八年级音乐下册教案全册
评论
0/150
提交评论