2025届河北省唐山市玉田县高级中学高三最后一模数学试题含解析_第1页
2025届河北省唐山市玉田县高级中学高三最后一模数学试题含解析_第2页
2025届河北省唐山市玉田县高级中学高三最后一模数学试题含解析_第3页
2025届河北省唐山市玉田县高级中学高三最后一模数学试题含解析_第4页
2025届河北省唐山市玉田县高级中学高三最后一模数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省唐山市玉田县高级中学高三最后一模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.22.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.43.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.24.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.6.下列四个图象可能是函数图象的是()A. B. C. D.7.已知为实数集,,,则()A. B. C. D.8.已知角的终边经过点,则A. B.C. D.9.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B. C. D.10.已知,则()A.2 B. C. D.311.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.012.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,,,,为的中点,则点到平面的距离是______.14.设,则“”是“”的__________条件.15.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.16.函数的定义域为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.18.(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.19.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.20.(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.21.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.22.(10分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.2、D【解析】

根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.3、A【解析】

利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.4、A【解析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题5、C【解析】

根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.6、C【解析】

首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.7、C【解析】

求出集合,,,由此能求出.【详解】为实数集,,,或,.故选:.【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.8、D【解析】因为角的终边经过点,所以,则,即.故选D.9、D【解析】

以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为.故选D.【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.10、A【解析】

利用分段函数的性质逐步求解即可得答案.【详解】,;;故选:.【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.11、C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.12、A【解析】

根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.14、充分必要【解析】

根据充分条件和必要条件的定义可判断两者之间的条件关系.【详解】当时,有,故“”是“”的充分条件.当时,有,故“”是“”的必要条件.故“”是“”的充分必要条件,故答案为:充分必要.【点睛】本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.15、0.18【解析】

根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.16、【解析】

对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)连接交于点,取中点,连结,证明平面得到答案.(Ⅱ)分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【详解】(Ⅰ)连接交于点,取中点,连结因为为菱形,所以.因为,所以.因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以因为所以是平行四边形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知两两垂直,分别以为轴建立如图所示的空间直角坐标系.设设平面的法向量为,由,取.平面的法向量为.所以二面角余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.18、(1)(2)答案不唯一具体见解析【解析】

(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进行求导后得,对分三种情况进行一级讨论,即,,,结合函数图象的单调性及零点存在定理,可得函数零点情况.【详解】解:(1)曲线在点处的切线方程为,即.令切线与曲线相切于点,则切线方程为,∴,∴,令,则,记,于是,在上单调递增,在上单调递减,∴,于是,.(2),①当时,恒成立,在上单调递增,且,∴函数在上有且仅有一个零点;②当时,在R上没有零点;③当时,令,则,即函数的增区间是,同理,减区间是,∴.ⅰ)若,则,在上没有零点;ⅱ)若,则有且仅有一个零点;ⅲ)若,则.,令,则,∴当时,单调递增,.∴又∵,∴在R上恰有两个零点,综上所述,当时,函数没有零点;当或时,函数恰有一个零点;当时,恰有两个零点.【点睛】本题考查导数的几何意义、切线方程、零点等知识,求解切线有关问题时,一定要明确切点坐标.以导数为工具,研究函数的图象特征及性质,从而得到函数的零点个数,此时如果用到零点存在定理,必需说明在区间内单调且找到两个端点值的函数值相乘小于0,才算完整的解法.19、(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.20、(1)见解析;(2)【解析】

(1)设,,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,,所以,设,,当时,单调递增,而,,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;∴在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,,,∴在单调递增,,即,从而,因为函数在上单调递减,∴在上恒成立,令,∵,∴,在上单调递减,,当时,,则在上单调递减,,符合题意.当时,在上单调递减,所以一定存在,当时,,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.21、(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论