版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市綦江区南州中学2025届高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,若,则()A. B. C. D.2.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是()A.2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B.2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C.2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D.2016年我国数字出版营收占新闻出版营收的比例未超过三分之一3.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.4.设等比数列的前项和为,若,则的值为()A. B. C. D.5.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米6.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.7.已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4.给出下列命题:①;②;③;④,其中真命题的个数为()A.1 B.2 C.3 D.48.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称9.设是虚数单位,则()A. B. C. D.10.设,满足约束条件,则的最大值是()A. B. C. D.11.执行如图所示的程序框图,输出的结果为()A. B. C. D.12.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____.14.已知函数,若,则实数的取值范围为__________.15.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________.16.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.18.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.19.(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.20.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.22.(10分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中,若的值最大,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.2、C【解析】
通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.3、B【解析】
根据特殊值及函数的单调性判断即可;【详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.4、C【解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,,,,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.5、B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.6、B【解析】
,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.7、A【解析】
先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.8、B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.9、A【解析】
利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.10、D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.11、D【解析】
由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.12、B【解析】
先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】乙不输的概率为,填.14、【解析】
画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为:【点睛】本题考查利用函数奇偶性及单调性解不等式.函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.15、81【解析】
根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系数之和为,,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.16、或【解析】
依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】
(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,∴,∴,∴当时,∴,.当时,满足上式.∴(2),令数列的前项和为.两式相减得∴恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.18、(1)(2)【解析】
(1)由抛物线的定义可得,即可求出,从而得到抛物线方程;(2)设直线的方程为,代入,得.设,,列出韦达定理,表示出中点的坐标,若、、、四点共圆,再结合,得,则即可求出参数,从而得解;【详解】解:(1)由抛物线定义,得,解得,所以抛物线的方程为.(2)设直线的方程为,代入,得.设,,则,.由,,得,所以.因为直线的斜率为,所以直线的斜率为,则直线的方程为.由解得.若、、、四点共圆,再结合,得,则,解得,所以直线的方程为.【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.19、(1)或(2)证明见解析【解析】
(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【点睛】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.20、(1)元.(2)①②万元【解析】
(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、、.所以;;.所以的分布列为所以(元).即每件产品的平均销售利润为元.(2)①由,得,令,,,则,由表中数据可得,则,所以,即,因为取,所以,故所求的回归方程为.②设年收益为万元,则令,则,,当时,,当时,,所以当,即时,有最大值.即该企业每年应该投入万元营销费,能使得该企业的年收益的预报值达到最大,最大收益为万元.【点睛】本题考查频率分布直方图,考查随机变量概率分布列与期望,考查求线性回归直线方程,及回归方程的应用.在求指数型回归方程时,可通过取对数的方法转化为求线性回归直线方程,然后再求出指数型回归方程.21、(1);(2)①;②证明见解析.【解析】
(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手房产交易定金支付合同3篇
- 2024年个人汽车贷款协议范例版
- 上海市崇明区九校2024-2025学年六年级(五四制)上学期期中英语试题(解析版)
- (2024版)人工智能语音助手定制开发合同
- 江南大学《多元统计分析与R建模》2023-2024学年第一学期期末试卷
- 2024年专业煤炭运送协议样本版B版
- 2024小区租户物业管理合同模板
- 2024年城市绿化专用树苗采购协议版B版
- 2024年度知识产权侵权诉讼和解协议3篇
- 暨南大学《中外政治经济制度比较》2021-2022学年第一学期期末试卷
- 2023年电信笔试-企业文化
- 社会福利思想全课程
- 语文五年级上册教学课件部编版习作:我想对您说(课件)
- 水电站运行综合作业教学大纲
- 江苏省职业技能鉴定题库统一试卷高级钳工操作技能试卷
- 第四单元口语交际 《辩论- 在辩论中学辩论》教学实录 部编版语文九年级下册
- 箱形梁加工制作工艺
- 蝴蝶豌豆花(注音)A4打印版
- 《项目进度管理研究文献综述》
- 青岛版(六三制)三上科学20《淡水资源》教学课件
- 人教版道德与法治五年级上册全册课时练习课件(2022年11月修订)
评论
0/150
提交评论