上海市宝山区行知实验中学2025届高考考前模拟数学试题含解析_第1页
上海市宝山区行知实验中学2025届高考考前模拟数学试题含解析_第2页
上海市宝山区行知实验中学2025届高考考前模拟数学试题含解析_第3页
上海市宝山区行知实验中学2025届高考考前模拟数学试题含解析_第4页
上海市宝山区行知实验中学2025届高考考前模拟数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区行知实验中学2025届高考考前模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点在所在的平面内,,,,,且,则()A. B. C. D.2.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限3.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.4.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.5.已知复数满足,且,则()A.3 B. C. D.6.关于函数在区间的单调性,下列叙述正确的是()A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减7.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.38.设集合,则()A. B. C. D.9.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.10.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多12.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.14.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.15.已知在等差数列中,,,前n项和为,则________.16.已知实数,满足,则目标函数的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,(1)当,,求不等式的解集;(2)已知,,的最小值为1,求证:.18.(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.19.(12分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.20.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.21.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?22.(10分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

确定点为外心,代入化简得到,,再根据计算得到答案.【详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.2、D【解析】

利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.3、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.4、D【解析】

建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.5、C【解析】

设,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.6、C【解析】

先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.7、D【解析】

利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.8、C【解析】

解对数不等式求得集合,由此求得两个集合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.9、B【解析】

根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题10、A【解析】

根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.11、D【解析】

根据两个图形的数据进行观察比较,即可判断各选项的真假.【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.12、B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,,,,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于基础题.14、【解析】三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的中点.所以,,填。【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等,所以本题的球心为AC中点。15、39【解析】

设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.16、-1【解析】

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)证明见解析【解析】

(1)将化简,分类讨论即可;(2)由(1)得,,展开后再利用基本不等式即可.【详解】(1)当时,,所以或或解得或,因此不等式的解集的或(2)根据,当且仅当时,等式成立.【点睛】本题考查绝对值不等式的解法、利用基本不等式证明不等式问题,考查学生基本的计算能力,是一道基础题.18、(1).(2)【解析】

(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,构造函数g(x)=x2+(t﹣2)x﹣tlnx,结合导数及函数的性质可求.【详解】(1),x>0,由题意可得,0,解可得t=﹣4,∴,易得,当x>2,0<x<1时,f′(x)>0,函数单调递增,当1<x<2时,f′(x)<0,函数单调递减,故当x=1时,函数取得极大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0时恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,则,(i)当t≥0时,g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)当﹣2<t<0时,g(x)在()上单调递减,在(0,),(1,+∞)上单调递增,此时g(1)=t﹣1<﹣1不合题意,舍去;(iii)当t=﹣2时,g′(x)0,即g(x)在(0,+∞)上单调递增,此时g(1)=﹣3不合题意;(iv)当t<﹣2时,g(x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)=t﹣1<﹣3不合题意,综上,t≥1时,f(x)≥2恒成立.【点睛】本题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.19、(1)见解析;(2)【解析】

(1)取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2)以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即可.【详解】(1)证明:如图,取的中点,连接.又为的中点,则是的中位线.所以且.又且,所以且.所以四边形是平行四边形.所以.因为,为的中点,所以.因为,所以.因为平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知两两互相垂直,所以分别以所在的直线为轴建立如图所示的空间直角坐标系:因为,所以点.则.设平面的法向量为,由,得,令,得平面的一个法向量为;显然平面的一个法向量为;设二面角的大小为,则.故二面角的余弦值是.【点睛】本题主要考查了线面垂直的证明以及建立空间直角坐标系求解二面角的问题,需要用到线线垂直与线面垂直的转换以及法向量的求法等.属于中档题.20、(1);(2)见解析【解析】

(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,,,则,,,.∴直线的方程为,即.又点在线段上,∴.∵P是的中点,∴∴,.由于,不重合,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论