下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精1。2点、线、面之间的位置关系1.2.1平面的基本性质与推论知识梳理1.平面的基本性质(1)空间点和直线的基本性质连结两点的线中,线段最短.过两点有一条直线,并且只有一条直线。(2)平面的性质公理及推论公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。图1-2—1-1如图1-2-1-1,A∈l,B∈l,且A∈α,B∈α,任意C∈lC∈α。这时,我们说直线在平面内或平面经过直线.公理2:经过不在同一直线上的三点,有且只有一个平面.可以简单地说,不共线的三点确定一个平面.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.如图1—2-1—2,P∈α∩βα∩β=l,且P∈l。图1—2-1-2如果两个平面有一条公共直线,则称这两个平面相交,这条直线叫两个平面的交线.2。平面基本性质的推论推论1:经过一条直线和直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.如果空间中的几个点或几条直线都在同一平面内,那么我们就说它们共面。知识导学教材从基本公理出发,研究点、线、面的基本关系,以“定义—判定—性质”的思路,从局部到整体,用线来研究面,再用平面的性质研究直线的垂直与平行,从而加深对简单几何体中线与面之间关系的正确认识。三个公理和三个推论是立体几何的基础,要在理解的基础上加以应用,有时需要结合初中平面几何的知识,把知识综合起来解决问题。在学习这一部分知识时还要注意,在平面几何中成立的定理或命题在立体几何中需要重新进行证明才能使用,有些在平面几何中的真命题在立体几何中可能是假命题,要注意加以区别.疑难突破1.在立体几何中,怎样表示平面?剖析:通常画平行四边形来表示平面(注意通常两字)。水平平面:通常画成锐角成45°,横边等于邻边的两倍.非水平平面:画成平行四边形。直立的平面:一组对边为铅垂线的平行四边形.相交的平面:一定要画出交线,遮住部分的线段画虚线或不画。平面通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC.点A在直线l上,记作:A∈l;点A在直线l外,记作Al;直线l在平面α内,记作lα。2。平面的3个性质公理和推论及它们的作用.剖析:从集合的角度看,公理1是说,如果一条直线(点集)中有两个元素(点)属于一个平面(点集),那么这条直线就是这个平面的真子集,是证明直线在平面内的重要依据;公理2和三个推论是确定平面的依据,可以证明点(或线)共面,也是确定平面个数的重要依据.需要注意,“有且只有”的含义;公理3是说,两个不重合的平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线,它为证明若干点共线提供了一条新的途径,也是证明若干条直线通过同一点的重要方法.公理1给出了判断直线在平面内的方法,也说明了在空间中的每个平面内都存在着各种平面图形,在每个平面内的问题也就是初中学习的平面几何的问题.公理2及三个推论说明了怎样的条件可以确定一个平面,从而使我们知道在什么条件下可以画出确定的平面,什么条件下两个平面重合,这些都是研究空间图形时首先需要明确的.公理3说明了两个相交平面的特征,对我们确定或画出两个平面的交线具有重要的指导作用。在应用上,公理1的主要作用是判定直线在平面内;公理2主要用于证明平面的确定和平面重合;公理3的作用是证明两个平面相交、三点共线和点在直线上等.证明三线共点问题常用公理2及推论来确定平面,再用公理3证该点在交线上;证明点、线共面等问题常利用公理2或推论确定一个平面,再利用公理1或公理3证明其他元素在这个平面上或者先说明一些元素在一个平面内,其余元素在另一个平面内,之后证明这两个平面重合(同一法).3.直线和平面的位置关系.剖析:直线与平面的位置关系有且只有三种:(1)直线在平面内——有无数个公共点,如图1—2—1—3(1);图1-2-1-3(2)直线与平面相交—-有且只有一个公共点,如图1—2—1-3(2);(3)直线与平面平行—-没有公共点,如图1—2—1—3(3)。要理解直线与平面的位置关系,可以结合实际图形,例如棱锥、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商业地产转让代理合同书版B版
- 二零二四年度标的为3000万元的大宗商品买卖合同3篇
- 2024保证协议合同范本
- 2024年员工放弃缴纳社会保险权益合同版
- 二零二四年度文化传媒让与担保合同3篇
- 保安工作总结计划汽车部件行业保安工作的生产安全
- 二零二四年度版权使用合同范本
- 中铁2024年度房地产经纪服务合同2篇
- 2024年度版权许可使用合同权利义务及许可范围界定
- 销售目标的制定与执行计划
- 神奇电家长课堂
- 思维导图通用模板
- 9700162-1 ISO15004-2-2007 光危害防护 (中文翻译稿)
- 康复仪器适应症与禁忌症
- CPK计算表格EXCEL模板
- 消防安全知识课件PPT(72张)
- 《投资理财》PPT课件(PPT 26页)
- 大型活动执行手册
- 兰州区域地质环境
- 十几加几减几口算练习
- 邵寨煤矿工作面注浆施工组织设计
评论
0/150
提交评论