版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题29统计核心知识点精讲复习目标1.能通过实际问题,辨认总体、个体、样本等基本概念.2.掌握三种统计图的画法,明确它们的优缺点及相互关系.特别是扇形统计图与条形统计图结合应用.3.会求一组数据的样本平均数、方差、标准差、中位数、众数等.能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观念。考点梳理考点1:全面调查与抽样调查1.有关概念1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.3.抽样调查样本的选取:1)抽样调查的样本要有代表性;2)抽样调查的样本数目要足够大.总体、个体、样本及样本容量总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量。考点2:几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2.折线统计图:用几条线段连成的折线来表示数据的图形.特点:易于显示数据的变化趋势.3.扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.4.频数分布直方图1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.4)频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.考点3:众数、中位数、平均数、方差1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.3.平均数1)平均数:一般地,如果有n个数,,…,,那么,叫做这n个数的平均数,读作“x拔”.2)加权平均数:如果n个数中,出现f1次,x2出现f2次,…,xk出现fk次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中f1,f2,…,fk叫做权.4.方差.通常用“”表示,即.在一组数据,,…,中,各数据与它们的平均数的差的平方的平均数,叫做这组数典例引领【题型1:数据的收集方式】【典例1】(2020•贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察 B.实验 C.调查 D.测量即时检测【变式1-1】(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤典例引领【题型2:与统计有关的概念】【变式1-2】(2023•辽宁)下列调查中,适宜采用全面调查方式的是()A.了解某种灯泡的使用寿命 B.了解一批冷饮的质量是否合格C.了解全国八年级学生的视力情况 D.了解某班同学中哪个月份出生的人数最多即时检测【变式1-3】(2023•郴州)下列问题适合全面调查的是()A.调查市场上某品牌灯泡的使用寿命B.了解全市人民对湖南省第二届旅发大会的关注情况C.了解郴江河的水质情况D.神舟十六号飞船发射前对飞船仪器设备的检查【变式1-4】(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况 B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生典例引领【题型3:用各种统计图描述数据】【典例3】(2023•成都)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.即时检测【变式3-1】(2023•扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图 B.折线统计图 C.扇形统计图 D.频数分布直方图【变式3-2】(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1 B.F6 C.F7 D.F10【变式3-3】(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多 B.最喜欢看“文创产品”的人数占被调查人数的14.3% C.最喜欢看“布展设计”的人数超过500人 D.统计图中“特效体验及其他”对应的圆心角是23.76°典例引领【题型4:平均数】【典例4】(2023•湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是()A.25立方米 B.30立方米 C.32立方米 D.35立方米即时检测【变式4-1】(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为.【变式4-2】(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是小时.【变式4-3】(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分 B.94分 C.92.5分 D.91分典例引领【题型5:中位数与众数的计算】【典例5】(2023•甘孜州)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示.成绩/米1.501.601.651.701.75人数23541这些运动员成绩的众数和中位数分别为()A.1.65米,1.65米 B.1.65米,1.70米C.1.75米,1.65米 D.1.50米,1.60米即时检测【变式5-1】(2023•达州)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5 B.2和5 C.2和3 D.3和2【变式5-2】(2023•黄石)我市某中学开展“经典诵读”比赛活动,810班在此次比赛中的得分分别是:9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1,这组数据的众数和中位数分别是()A.9.1,9.1 B.9.1,9.15 C.9.1,9.2 D.9.9,9.2【变式5-3】(2023•黑龙江)已知一组数据1,0,﹣3,5,x,2,﹣3的平均数是1,则这组数据的众数是()A.﹣3 B.5 C.﹣3和5 D.1和3【变式5-4】(2023•盘锦)为了解全市中学生的视力情况,随机抽取某校50名学生的视力情况作为其中一个样本,整理样本数据如图.则这50名学生视力情况的中位数和众数分别是()A.4.8,4.8 B.13,13 C.4.7,13 D.13,4.8典例引领【题型6:方差】【典例6】(2023•广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:S甲2=2.1,S乙2=3.5,S丙2=9,S丁2=0.7,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁即时检测【变式6-1】(2023•眉山)已知一组数据为2,3,4,5,6,则该组数据的方差为()A.2 B.4 C.6 D.10【变式6-2】(2023•朝阳)某校在甲、乙、丙、丁四名同学中选中一人参加今年5月份举办的教育系统文艺展演独唱大赛,经过三轮初赛,他们的平均成绩都是88.5分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=1.7,s丁2=2.8,则这四名同学独唱成绩最稳定的是.【变式6-3】(2023•凉山州)若一组数据x1,x2,x3,…,xn的方差为2,则数据x1+3,x2+3,x3+3,…,xn+3的方差是()A.2 B.5 C.6 D.11基础过关一.选择题(共9小题)1.为了了解2015年我县九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2015年我县九年级学生是总体 B.样本容量是1000 C.1000名九年级学生是总体的一个样本 D.每一名九年级学生是个体2.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500 B.4000 C.3600 D.48003.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25 B.60 C.0.26 D.154.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元 B.8元 C.8.9元 D.9.2元5.下列调查中,最适合采用全面调查(普查)的是()A.调查全国中小学生对第二次太空授课的满意度B.调查全国人民,掌握新冠防疫知识情况 C.了解某类型医用口罩的质量D.检查神舟飞船十三号的各零部件6.一组数据2,1,4,x,6的平均值是4,则x的值为()A.3 B.5 C.6 D.77.小雨同学参加了学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是()A.82分 B.83分 C.84分 D.85分8.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数分别是()A.5、6 B.5、5 C.6、5 D.6、69.某鞋店在做市场调查时,为了提高销售量,商家最应关注鞋子型号的()A.众数 B.平均数 C.中位数 D.极差二.填空题(共6小题)10.要统计某城市2021年1﹣12月的天气变化情况,选择统计图较好.11.有60个数据,共分成4组,第1、2组的频数分别为25,19,第4组的频率是0.15,则第3组的频数是.12.如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩的最低分是分.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为S2甲=0.4,S2乙=0.3,则成绩较为稳定的是(填“甲”或“乙”).14.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有人.15.一个容量为100的样本,最大值为142,最小值是60,取组距为10,则可以分为组.三.解答题(共2小题)16.为落实“双减”政策,某校利用课后服务开展了“书香校园”的读书活动,活动中,为了解学生对书籍种类(A:艺术类,B:科技类,C:文学类,D:体育类)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的学生必须选择而且只能在这四种类型中选择一项)将数据进行整理并绘制成两幅不完整的统计图.(1)这次调查中,一共调查了名学生;(2)在扇形统计图中,“D”部分所对应的圆心角的度数为度;并补全条形统计图.(3)若全校有4800名学生,请估计喜欢B(科技类)的学生有多少名?17.某地旅游部门为了促进本地生态特色城镇和新农村建设,将甲、乙,丙三家民宿的相关资料放到某网络平台上进行推广宣传.该平台邀请部分曾在这三家民宿体验过的游客参与调查,得到了这三家民宿的“综合满意度”评分,评分越高表明游客体验越好,现从这三家民宿“综合满意度”的评分中各随机抽取10个评分数据,并对所得数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两家民宿“综合满意度”评分的折线图:b.丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1c.甲、乙、丙三家民宿“综合满意度”评分的平均数、中位数:甲乙丙平均数m4.54.2中位数4.54.7n根据以上信息,回答下列问题:(1)表中m的值是,n的值是;(2)设甲、乙、丙三家民宿“综合满意度”评分的方差分别是s甲2,s乙2,s丙2,直接写出s甲2,s乙2,s丙2之间的大小关系;(3)根据“综合满意度”的评分情况,该平台打算将甲、乙、丙三家民宿中的一家置顶推荐,你认为该平台会将这三家民宿中的哪家置顶推荐?说明理由(至少从两个方面说明).能力提升一.选择题(共11小题)1.今年3月份某校举行学雷锋志愿服务活动,为了解全校学生一周学雷锋志愿服务的次数,随机抽取了50名学生进行调查,依据调查结果绘制了如图所示的折线统计图,下列关于该校学生一周学雷峰志愿服务次数说法正确的是()A.众数是5 B.中位数是7 C.中位数是9 D.众数是132.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<S C.S=S D.无法判断3.某次数学测试,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数分布直方图,根据图示信息,下列对这次数学测试描述不正确的是()A.本次抽查了50名学生的成绩 B.估计测试及格率(60分以上为及格)为92%C.抽取学生的成绩的中位数落在第三组 D.抽取学生的成绩的众数是第三组的数4.如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不小于6小时的人数是()A.6人 B.8人 C.14人 D.36人5.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm的人数是()A.28500 B.17100 C.10800 D.15006.一个不透明的盒子中装有10个小球(白色或黑色),它们除了颜色外其余都相同,每次摸球试验前,都将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,如表是一组统计数据:摸球次数(n)50100150200250300500摸到白球的次数(m)286078104123152251摸到白球的频率(m/n)0.560.600.520.520.490.510.50由表可以推算出盒子白色小球的个数是()A.4个 B.5个 C.6个 D.7个7.一组数据:3,4,4,5,如果再添加一个数据4,那么会发生变化的统计量是()A.平均数 B.中位数 C.众数 D.方差8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分 B.方差是10 C.平均数是91分 D.中位数是90分9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3 B.a, C., D.,10.超市里五种型号的书包价格分别为50,60,80,90,110(单位:元),降价促销后,每种型号书包价格都降了10元.降价前的五个数据与降价后的五个数据相比,不变的是()A.众数 B.中位数 C.方差 D.平均数11.九年级某班准备从班上19名女生中,挑选10名身高较高的同学参加校排球比赛,若这19名女生的身高各不相同,其中女生小红想知道自己能否入选,只需知道这19名女生身高数据的()A.中位数 B.平均数 C.最小值 D.方差二.填空题(共1小题)12.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.三.解答题(共2小题)13.在中国上下五千年的历史长河中,涌现出一批批中华名人,各自创下了不朽的丰功伟绩,极大地推动了中华文明乃至整个人类文明的发展.为了解中华历史名人,增强民族自豪感和爱国热情,某校团委与学校历史教研组组织了一次全校2000名学生参加的“中华名人知多少”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中部分学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)抽取的样本容量为,a=,b=;(2)请补全频数分布直方图;(3)若将成绩按上述分段方式画扇形统计图,则分数段70≤x<80对应的扇形的圆心角为度;(4)若成绩在80分以上(包括80分)的为“优良”等,则该校参加这次比赛的2000名学生中成绩达到“优良”等的约有人.14.甲、乙两名队员参加射击选拔赛,射击成绩见统计图:根据以上信息,整理分析数据如下:队员平均数(环)中位数(环)众数(环)方差(环2)甲7.9bc4.09乙a77d(1)直接写出表格中a、b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.真题感知1.(2022•柳州)以下调查中,最适合采用抽样调查的是()A.了解全国中学生的视力和用眼卫生情况 B.了解全班50名同学每天体育锻炼的时间 C.学校招聘教师,对应聘人员进行面试 D.为保证神舟十四号载人飞船成功发射,对其零部件进行检查2.(2023•南充)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cm B.22.5cm C.23cm D.23.5cm3.(2022•乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照如图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88 B.90 C.91 D.924.(2023•鞍山)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3 B.8,2 C.3,3 D.3,25.(2021•德阳)要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是.6.(2023•河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有棵.7.(2023•丽水)青田县“稻鱼共生”种养方式因稻鱼双收、互惠共生而受到农户青睐,现有一农户在5块面积相等的稻田里养殖田鱼,产量分别是(单位:kg):12,13,15,17,18.则这5块稻田的田鱼平均产量是kg.8.(2023•福建)某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目应聘者综合知识工作经验语言表达甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.9.(2023•永州)甲、乙两队学生参加学校拉拉队选拔,两队队员的平均身高均为1.72m,甲队队员的身高的方差为1.2,乙队队员身高的方差为5.6.若要求拉拉队身高比较整齐,应选择队较好.10.(2023•娄底)某区教育局为了了解某年级学生对科学知识的掌握情况,在全区范围内随机抽取若干名个学生进行科学知识测试,按照测试成绩分优秀,良好、合格与不合格四个等级,并绘制了如图所示两幅不完整统计图.(1)参与本次测试的学生人数为,m=;(2)请补全条形统计图;(3)若全区该年级共有5000名学生,请估计该年级对科学知识掌握情况较好(测试成绩能达到良好及以上等级)的学生人数.11.(2023•宁夏)学校组织七、八年级学生参加了“国家安全知识”测试.已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级86947984719076839087八年级88769078879375878779整理如下:年级平均数中位数众数方差七年级84a9044.4八年级8487b36.6根据以上信息,回答下列问题:(1)填空:a=,b=;A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是七年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.
专题29统计核心知识点精讲典例引领【题型1:数据的收集方式】【典例1】(2020•贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察 B.实验 C.调查 D.测量【答案】C【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.即时检测【变式1-1】(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤【答案】C【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.典例引领【题型2:与统计有关的概念】【变式1-2】(2023•辽宁)下列调查中,适宜采用全面调查方式的是()A.了解某种灯泡的使用寿命 B.了解一批冷饮的质量是否合格 C.了解全国八年级学生的视力情况 D.了解某班同学中哪个月份出生的人数最多【答案】D【解答】解:A、了解某种灯泡的使用寿命,适宜采用抽样调查方式,故此选项不符合题意;B、了解一批冷饮的质量是否合格,适宜采用抽样调查方式,故此选项不符合题意;C、了解全国八年级学生的视力情况,适宜采用抽样调查方式,故此选项不符合题意;D、了解某班同学中哪个月份出生的人数最多,适宜采用全面调查方式,故此选项符合题意;故选:D.即时检测【变式1-3】(2023•郴州)下列问题适合全面调查的是()A.调查市场上某品牌灯泡的使用寿命 B.了解全市人民对湖南省第二届旅发大会的关注情况 C.了解郴江河的水质情况 D.神舟十六号飞船发射前对飞船仪器设备的检查【答案】D【解答】解:A.调查市场上某品牌灯泡的使用寿命,适合抽样调查,故选项不符合题意;B.了解全市人民对湖南省第二届旅发大会的关注情况,适合抽样调查,故选项不符合题意;C.了解郴江河的水质情况,适合抽样调查,故选项不符合题意;D.神舟十六号飞船发射前对飞船仪器设备的检查,适合全面调查,故选项符合题意;故选:D.【变式1-4】(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况 B.150 C.从中抽取的150名师生的国家安全知识掌握情况 D.从中抽取的150名师生【答案】C【解答】解:样本是所抽取的150名师生的国家安全知识掌握情况.故选:C.典例引领【题型3:用各种统计图描述数据】【典例3】(2023•成都)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【答案】(1)300,补全条形统计图见解答;(2)144°;(3)360名.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,“敬老服务”对应的圆心角度数为:360°×=144°;(3)1500×80%×=360(名),答:估计参加“文明宣传”项目的师生人数大约为360名.即时检测【变式3-1】(2023•扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图 B.折线统计图 C.扇形统计图 D.频数分布直方图【答案】C【解答】解:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是扇形统计图.故选:C.【变式3-2】(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1 B.F6 C.F7 D.F10【答案】D【解答】解:根据题意可得,F10地区环境空气质量综合指数约为1.9,是10个地区中最小值.故选:D.【变式3-3】(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多 B.最喜欢看“文创产品”的人数占被调查人数的14.3% C.最喜欢看“布展设计”的人数超过500人 D.统计图中“特效体验及其他”对应的圆心角是23.76°【答案】C【解答】解:由题意得:A.最喜欢看“文物展品”的人数最多,占58.25%,说法正确,故本选项不符合题意;B.最喜欢看“文创产品”的人数占被调查人数的14.3%,说法正确,故本选项不符合题意;C.最喜欢看“布展设计”的人数为:3666×9.82%≈360(人),原说法错误,故本选项符合题意;D.统计图中“特效体验及其他”对应的圆心角是:360°×6.6%=23.76°,说法正确,故本选项不符合题意.故选:C.典例引领【题型4:平均数】【典例4】(2023•湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是()A.25立方米 B.30立方米 C.32立方米 D.35立方米【答案】B【解答】解:由折线图可知,该小区五天的用水量分别是:30、40、20、30、30.所以5天的平均用水量为:=30(立方米).故选:B.即时检测【变式4-1】(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为3.【答案】3.【解答】解:由题意(2+3+3+4+a)=3,∴a=3.故答案为:3.【变式4-2】(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是9小时.【答案】见试题解答内容【解答】解:(10+9+10+8+8)÷5=9(小时).即该学生这5天的平均睡眠时间是9小时.故答案为:9.【变式4-3】(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分 B.94分 C.92.5分 D.91分【答案】B【解答】解:由题意可得,90×20%+95×80%=94(分),即她的最后得分为94分,故选:B.典例引领【题型5:中位数与众数的计算】【典例5】(2023•甘孜州)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示.成绩/米1.501.601.651.701.75人数23541这些运动员成绩的众数和中位数分别为()A.1.65米,1.65米 B.1.65米,1.70米 C.1.75米,1.65米 D.1.50米,1.60米【答案】A【解答】解:由表可知1.65m出现次数最多,有5次,所以众数为1.65m,这15个数据最中间的数据是第8个,即1.65m,所以中位数为1.65m,故选:A.即时检测【变式5-1】(2023•达州)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5 B.2和5 C.2和3 D.3和2【答案】C【解答】解:数据从小到大排列为:2,2,3,4,5,所以中位数为3;数据2出现了2次,最多,所以这组数据的众数为2.故选:C.【变式5-2】(2023•黄石)我市某中学开展“经典诵读”比赛活动,810班在此次比赛中的得分分别是:9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1,这组数据的众数和中位数分别是()A.9.1,9.1 B.9.1,9.15 C.9.1,9.2 D.9.9,9.2【答案】B【解答】解:将数据9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1按照从小到大排列是:9.1,9.1,9.1,9.1,9.2,9.8,9.9,9.9,则这组数据的众数是9.1,中位数是(9.1+9.2)÷2=9.15,故选:B.【变式5-3】(2023•黑龙江)已知一组数据1,0,﹣3,5,x,2,﹣3的平均数是1,则这组数据的众数是()A.﹣3 B.5 C.﹣3和5 D.1和3【答案】C【解答】解:∵数据1,0,﹣3,5,x,2,﹣3的平均数是1,∴1+0﹣3+5+x+2﹣3=7×1,解得x=5,则这组数据为1,0,﹣3,5,5,2,﹣3,∴这组数据的众数为﹣3和5,故选:C.【变式5-4】(2023•盘锦)为了解全市中学生的视力情况,随机抽取某校50名学生的视力情况作为其中一个样本,整理样本数据如图.则这50名学生视力情况的中位数和众数分别是()A.4.8,4.8 B.13,13 C.4.7,13 D.13,4.8【答案】A【解答】解:把这50名学生视力情况从小到大排列,排在中间的两个数分别是4.8、4.8,故中位数为=4.8;在这50名学生视力情况中,4.8出现的次数最多,故众数为4.8.故选:A.典例引领【题型6:方差】【典例6】(2023•广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:S甲2=2.1,S乙2=3.5,S丙2=9,S丁2=0.7,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁【答案】D【解答】解:∵,,,,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.即时检测【变式6-1】(2023•眉山)已知一组数据为2,3,4,5,6,则该组数据的方差为()A.2 B.4 C.6 D.10【答案】A【解答】解:=×(2+3+4+5+6)=4,s2=×[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故选:A.【变式6-2】(2023•朝阳)某校在甲、乙、丙、丁四名同学中选中一人参加今年5月份举办的教育系统文艺展演独唱大赛,经过三轮初赛,他们的平均成绩都是88.5分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=1.7,s丁2=2.8,则这四名同学独唱成绩最稳定的是甲.【答案】甲.【解答】解:∵S甲2=1.5,S乙2=2.6,S丙2=1.7,S丁2=2.8,∴S甲2<S丙2<S乙2<S丁2,∴在平均成绩相等的情况下,这四名同学独唱成绩最稳定的是甲.故答案为:甲.【变式6-3】(2023•凉山州)若一组数据x1,x2,x3,…,xn的方差为2,则数据x1+3,x2+3,x3+3,…,xn+3的方差是()A.2 B.5 C.6 D.11【答案】A【解答】解:设一组数据x1,x2,x3,…,xn的平均数为,则方差为[...+]=2,∴数据x1+3,x2+3,x3+3,…,xn+3的平均数为(+3),方差为[+...+]=[...+]=2.故选:A.基础过关一.选择题(共9小题)1.为了了解2015年我县九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2015年我县九年级学生是总体 B.样本容量是1000 C.1000名九年级学生是总体的一个样本 D.每一名九年级学生是个体【答案】B【解答】解:A、2015年我县九年级学生是总体,说法错误,应为2015年我县九年级学生学业水平考试的数学成绩是总体,故此选项错误;B、样本容量是1000,说法正确,故此选项正确;C、1000名九年级学生是总体的一个样本,说法错误,应为1000名九年级学生学业水平考试的数学成绩是总体的一个样本,故此选项错误;D、每一名九年级学生是个体,说法错误,应为每一名九年级学生学业水平考试的数学成绩是个体,故此选项错误;故选:B.2.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500 B.4000 C.3600 D.4800【答案】A【解答】解:5000×=4500(人).故选:A.3.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25 B.60 C.0.26 D.15【答案】A【解答】解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=0.25.故选:A.4.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元 B.8元 C.8.9元 D.9.2元【答案】C【解答】解:10×60%+8×25%+6×15%=6+2+0.9=8.9(元).故该月食堂销售午餐盒饭的平均价格为8.9元.故选:C.5.下列调查中,最适合采用全面调查(普查)的是()A.调查全国中小学生对第二次太空授课的满意度 B.调查全国人民,掌握新冠防疫知识情况 C.了解某类型医用口罩的质量 D.检查神舟飞船十三号的各零部件【答案】D【解答】解:A.调查全国中小学生对第二次太空授课的满意度,适合抽样调查,故本选项不符合题意;B.调查全国人民,掌握新冠防疫知识情况,适合抽样调查,故本选项不符合题意;C.了解某类型医用口罩的质量,适合抽样调查,故本选项不符合题意;D.检查神舟飞船十三号的各零部件,事件重大,适合全面调查,故本选项符合题意.故选:D.6.一组数据2,1,4,x,6的平均值是4,则x的值为()A.3 B.5 C.6 D.7【答案】D【解答】解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.7.小雨同学参加了学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是()A.82分 B.83分 C.84分 D.85分【答案】C【解答】解:根据题意得:80×50%+90×30%+85×20%=40+27+17=84(分).故选:C.8.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数分别是()A.5、6 B.5、5 C.6、5 D.6、6【答案】A【解答】解:因为5出现的次数最多,所以众数是5,将这组数据按从小到大进行排序后,第9个数和第10个数的平均数即为中位数,所以中位数是,故选:A.9.某鞋店在做市场调查时,为了提高销售量,商家最应关注鞋子型号的()A.众数 B.平均数 C.中位数 D.极差【答案】A【解答】解:由于众数是数据中出现最多的数,故鞋业销售商最关注的是销售量最多的鞋号即众数.故选:A.二.填空题(共6小题)10.要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.【答案】折线.【解答】解:要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.故答案为:折线.11.有60个数据,共分成4组,第1、2组的频数分别为25,19,第4组的频率是0.15,则第3组的频数是7.【答案】7.【解答】解:∵有60个数据,共分成4组,第4组的频率是0.15,∴第4组的频数是:60×0.15=9,故第3组的频数是:60﹣25﹣19﹣9=7.故答案为:7.12.如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩的最低分是60分.【答案】60.【解答】解:由折线统计图得,该同学这6次成绩的最低分是60分.故答案为:60.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为S2甲=0.4,S2乙=0.3,则成绩较为稳定的是乙(填“甲”或“乙”).【答案】见试题解答内容【解答】解:∵S2甲=0.4,S2乙=0.3,∴S2甲>,S2乙,∴乙同学的成绩较为稳定.故答案为乙.14.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有26人.【答案】见试题解答内容【解答】解:由图象可得,成绩为“优良”(80分及80分以上)的学生有:14+12=26(人),故答案为:26.15.一个容量为100的样本,最大值为142,最小值是60,取组距为10,则可以分为9组.【答案】9.【解答】解:(142﹣60)÷10=8余2,所以分成9组,故答案为:9.三.解答题(共2小题)16.为落实“双减”政策,某校利用课后服务开展了“书香校园”的读书活动,活动中,为了解学生对书籍种类(A:艺术类,B:科技类,C:文学类,D:体育类)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的学生必须选择而且只能在这四种类型中选择一项)将数据进行整理并绘制成两幅不完整的统计图.(1)这次调查中,一共调查了200名学生;(2)在扇形统计图中,“D”部分所对应的圆心角的度数为54度;并补全条形统计图.(3)若全校有4800名学生,请估计喜欢B(科技类)的学生有多少名?【答案】(1)200名;(2)54°;补全条形统计图见解答;(3)1680名.【解答】解:(1)40÷20%=200(名),故答案为:200;(2)D所占百分比为×100%=15%,扇形统计图中“D”所在扇形的圆心角的度数为:360°×15%=54°,C的人数是:200×30%=60(名),补图如下:故答案为:54;(3)4800×=1680(名),答:估计喜欢B(科技类)的学生有1680名.17.某地旅游部门为了促进本地生态特色城镇和新农村建设,将甲、乙,丙三家民宿的相关资料放到某网络平台上进行推广宣传.该平台邀请部分曾在这三家民宿体验过的游客参与调查,得到了这三家民宿的“综合满意度”评分,评分越高表明游客体验越好,现从这三家民宿“综合满意度”的评分中各随机抽取10个评分数据,并对所得数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两家民宿“综合满意度”评分的折线图:b.丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1c.甲、乙、丙三家民宿“综合满意度”评分的平均数、中位数:甲乙丙平均数m4.54.2中位数4.54.7n根据以上信息,回答下列问题:(1)表中m的值是4.5,n的值是4.5;(2)设甲、乙、丙三家民宿“综合满意度”评分的方差分别是s甲2,s乙2,s丙2,直接写出s甲2,s乙2,s丙2之间的大小关系;(3)根据“综合满意度”的评分情况,该平台打算将甲、乙、丙三家民宿中的一家置顶推荐,你认为该平台会将这三家民宿中的哪家置顶推荐?说明理由(至少从两个方面说明).【答案】(1)4.5,4.5;(2)<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高.【解答】解:(1)甲家民宿“综合满意度”评分:3.2,4.2,5.0,4.5,5.0,4.9,4.5,4.2,5.0,4.5,∴m=(3.2+4.2+5.0+4.5+5.0+4.9+4.5+4.2+5.0+4.5)=4.5,丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1,从小到大排列为:2.6.3.1.3.8.4.5.4.5.4.5.4.5.4.7.4.8.5.∴中位数n==4.5,故答案为:4.5,4.5;(2)根据折线统计图可知,乙的评分数据在4分与5分之间波动,甲的数据在3.2分和5分之间波动,根据丙的数据可以在2.6至5分之间波动,∴<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高,答案不唯一,合理即可.能力提升一.选择题(共11小题)1.今年3月份某校举行学雷锋志愿服务活动,为了解全校学生一周学雷锋志愿服务的次数,随机抽取了50名学生进行调查,依据调查结果绘制了如图所示的折线统计图,下列关于该校学生一周学雷峰志愿服务次数说法正确的是()A.众数是5 B.中位数是7 C.中位数是9 D.众数是13【答案】A【解答】解:因为5出现了13次,出现的次数最多,所以该校一周学雷峰志愿服务次数的众数是5;该校一周学雷峰志愿服务次数最中间的两个数字都为6,所以该组数据的中位数为6;故选项A正确,符合题意.故选:A.2.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<S C.S=S D.无法判断【答案】A【解答】解:由折线统计图得乙运动员的成绩波动较大,所以S>S.故选:A.3.某次数学测试,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数分布直方图,根据图示信息,下列对这次数学测试描述不正确的是()A.本次抽查了50名学生的成绩 B.估计测试及格率(60分以上为及格)为92%C.抽取学生的成绩的中位数落在第三组 D.抽取学生的成绩的众数是第三组的数【答案】D【解答】解:本次抽取的学生人数为4+10+18+12+6=50(人),则选项A正确,不符合题意;估计测试及格率(6(0分)以上为及格)为,则选项B正确,不符合题意;将抽取学生的成绩从小到大进行排序后,第25个数和第26个数的平均数即为中位数,∵4+10=14<25,4+10+18=32>26,∴抽取学生的成绩的中位数落在第三组,选项C正确,不符合题意;因为不能确定出现次数最多的数在哪一组,所以抽取学生的成绩的众数不一定是第三组的数,选项D不正确,不符合题意;故选:D.4.如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不小于6小时的人数是()A.6人 B.8人 C.14人 D.36人【答案】C【解答】解:由频数分布直方图知,每周课外阅读时间不小于6小时的人数是8+6=14(人),故选:C.5.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm的人数是()A.28500 B.17100 C.10800 D.1500【答案】A【解答】解:估计全市男生的身高不高于180cm的人数是30000×=28500(名),故选:A.6.一个不透明的盒子中装有10个小球(白色或黑色),它们除了颜色外其余都相同,每次摸球试验前,都将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,如表是一组统计数据:摸球次数(n)50100150200250300500摸到白球的次数(m)286078104123152251摸到白球的频率(m/n)0.560.600.520.520.490.510.50由表可以推算出盒子白色小球的个数是()A.4个 B.5个 C.6个 D.7个【答案】B【解答】解:∵通过大量重复试验后发现,摸到白球的频率稳定于0.5,∴10×0.5=5,即白色小球的个数是5个.故选:B.7.一组数据:3,4,4,5,如果再添加一个数据4,那么会发生变化的统计量是()A.平均数 B.中位数 C.众数 D.方差【答案】D【解答】解:原数据的3,4,5,4的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×2+(5﹣4)2]=0.5;新数据3,4,4,4,5的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×3+(5﹣4)2]=0.4;故选:D.8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分 B.方差是10 C.平均数是91分 D.中位数是90分【答案】B【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故D正确;∵平均数是(85×2+100×1+90×5+95×2)÷10=91;故C正确;方差是:×(90﹣91)2+(100﹣91)2]=19≠10;故B错误.综上所述,B选项符合题意,故选:B.9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3 B.a, C., D.,【答案】D【解答】解:由平均数定义可知:,因为a1,a2,a3,a4,a5是5个正数,且a1>a2>a3>a4>a5,所以将这组数据按从小到大排列为0,a5,a4,a3,a2,a1,由于有偶数个数,取最中间两个数的平均数,∴其中位数为,故选:D.10.超市里五种型号的书包价格分别为50,60,80,90,110(单位:元),降价促销后,每种型号书包价格都降了10元.降价前的五个数据与降价后的五个数据相比,不变的是()A.众数 B.中位数 C.方差 D.平均数【答案】C【解答】解:降价前书包价格分别为50,60,80,90,110,中位数是80,平均数是=78,方差是×[(78﹣50)2+(78﹣60)2+(78﹣80)2+(78﹣90)2+(78﹣110)2]=456,没有众数,降价后书包价格分别为40,50,70,80,100,中位数是70,平均数是=68,方差是×[(68﹣40)2+(68﹣50)2+(68﹣70)2+(68﹣80)2+(68﹣100)2]=456,没有众数,综上可知降价前的五个数据与降价后的五个数据相比,不变的是方差.故选:C.11.九年级某班准备从班上19名女生中,挑选10名身高较高的同学参加校排球比赛,若这19名女生的身高各不相同,其中女生小红想知道自己能否入选,只需知道这19名女生身高数据的()A.中位数 B.平均数 C.最小值 D.方差【答案】A【解答】解:共有19名排球队员,挑选10名个头高的参加校排球比赛,所以小红需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第10名学生的身高是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否入选.故选:A.二.填空题(共1小题)12.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是100人.【答案】见试题解答内容【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣20﹣80﹣40=100(人),故答案为:100人.三.解答题(共2小题)13.在中国上下五千年的历史长河中,涌现出一批批中华名人,各自创下了不朽的丰功伟绩,极大地推动了中华文明乃至整个人类文明的发展.为了解中华历史名人,增强民族自豪感和爱国热情,某校团委与学校历史教研组组织了一次全校2000名学生参加的“中华名人知多少”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中部分学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70200.1070≤x<8030b80≤x<90a0.3090≤x≤100800.40请根据所给信息,解答下列问题:(1)抽取的样本容量为200,a=60,b=0.15;(2)请补全频数分布直方图;(3)若将成绩按上述分段方式画扇形统计图,则分数段70≤x<80对应的扇形的圆心角为54度;(4)若成绩在80分以上(包括80分)的为“优良”等,则该校参加这次比赛的2000名学生中成绩达到“优良”等的约有1400人.【答案】(1)200,60,0.15;(2)见解答;(3)54;(4)1400.【解答】解:(1)∵50≤x<60的频数为10,频率为0.05,∴抽取的样本容量为:10÷0.05=200;∴a=200×0.3=60,;故答案为:200,60,0.15;(2)根据表格数据补全频数分布直方图如下:(3)∵70≤x<80对应的频率是0.15,分数段70≤x<80对应的扇形的圆心角为:360°×0.15=54°,故答案为:54;(4)该校参加这次比赛的2000名学生中成绩“优良”等约有:2000×(0.3+0.4)=1400(人),该校参加这次比赛的2000名学生中成绩“优良”等约有1400人.故答案为:1400.14.甲、乙两名队员参加射击选拔赛,射击成绩见统计图:根据以上信息,整理分析数据如下:队员平均数(环)中位数(环)众数(环)方差(环2)甲7.9bc4.09乙a77d(1)直接写出表格中a、b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.【答案】(1)a=7,b=8.5,c=9;(2)1.2;(3)选甲,理由见解答.【解答】解:(1)乙的平均成绩a=×(5+6×2+7×4+8×2+9)=7(环);∵甲射击的成绩从小到大从新排列为:3、6、7、8、8、9、9、9、10、10,∴甲射击成绩的中位数b==8.5(环),甲射击的成绩中出现次数最多的是9,故众数b=9.故a=7,b=8.5,c=9;(2)方差d=×[(5﹣7)2+2×(6﹣7)2+4×(7﹣7)2+2×(8﹣7)2+(9﹣7)2]=×(4+2+2+4)=1.2;(3)应选甲,理由如下:因为甲的平均数,中位数,众数均高于乙,所以应选甲真题感知1.(2022•柳州)以下调查中,最适合采用抽样调查的是()A.了解全国中学生的视力和用眼卫生情况 B.了解全班50名同学每天体育锻炼的时间 C.学校招聘教师,对应聘人员进行面试 D.为保证神舟十四号载人飞船成功发射,对其零部件进行检查【答案】A【解答】解:A、了解全国中学生的视力和用眼卫生情况,最适合采用抽样调查,故A符合题意;B、了解全班50名同学每天体育锻炼的时间,最适合采用全面调查,故B不符合题意;C、学校招聘教师,对应聘人员进行面试,最适合采用全面调查,故C不符合题意;D、为保证神舟十四号载人飞船成功发射,对其零部件进行检查,最适合采用全面调查,故D不符合题意;故选:A.2.(2023•南充)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cm B.22.5cm C.23cm D.23.5cm【答案】D【解答】解:由题意可知,销量最多的是23.5cm,所以建议下次进货量最多的女鞋尺码是23.5cm.故选:D.3.(2022•乐山
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校庆2024元旦联欢晚会闭幕词(3篇)
- 北京市顺义区2023-2024学年高一上学期期末考试化学试题(含答案)
- 江苏省镇江市2023-2024学年四年级上学期语文期末试卷(含答案)
- 记忆绕口令地理学习更轻松
- 设备购买合同范本示范
- 诚信广告自律保证书
- 详勘地质项目投标
- 语文大专论述习作考核卷
- 语文课引发的大学教育反思
- 负责到底的爱情保证
- 《古人谈读书》教学课件1(第一课时)
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- 浙教版劳动九年级项目四任务二《统筹规划与工作分配》教案
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 洗浴中心传染病病例防控措施
- 施氏十二字养生功防治颈椎病教程文件
- 子宫内膜癌-医师教学查房
- 斯拉夫送行曲混声合唱谱
- 现代教育学基础 课件 第五章 课程
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- 人教版小学1-4年级英文词汇表
评论
0/150
提交评论