湖北恩施学院《ip设计》2022-2023学年第一学期期末试卷_第1页
湖北恩施学院《ip设计》2022-2023学年第一学期期末试卷_第2页
湖北恩施学院《ip设计》2022-2023学年第一学期期末试卷_第3页
湖北恩施学院《ip设计》2022-2023学年第一学期期末试卷_第4页
湖北恩施学院《ip设计》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页湖北恩施学院

《ip设计》2022-2023学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的三维重建任务中,假设要从一组不同角度拍摄的二维图像中重建出物体的三维模型。这些图像可能存在噪声和拍摄误差。为了获得准确的三维重建结果,以下哪种技术是重要的?()A.基于立体视觉的方法,通过匹配不同图像中的对应点B.直接使用二维图像的平均信息来估计三维形状C.忽略图像中的噪声和误差,进行简单的重建D.随机生成三维模型,然后与二维图像进行匹配2、在计算机视觉的实际应用中,模型的实时性是一个重要的考虑因素。以下关于实时性的描述,不正确的是()A.对于一些需要实时响应的应用,如自动驾驶和工业检测,模型的处理速度至关重要B.模型的复杂度、计算资源和算法效率都会影响实时性C.可以通过模型压缩、硬件加速和优化算法等方法来提高模型的实时性D.实时性只与模型本身有关,与硬件设备和系统架构无关3、在计算机视觉的姿态估计任务中,例如估计人体关节的位置和姿态,以下哪种方法可能在精度和实时性之间取得较好的平衡?()A.基于模型的方法B.基于深度学习的回归方法C.基于深度学习的分类方法D.以上都不是4、在计算机视觉的图像分类任务中,假设要处理类别不均衡的数据集,即某些类别的样本数量远远少于其他类别。以下关于处理类别不均衡的方法描述,正确的是:()A.直接使用传统的分类算法,类别不均衡不会对结果产生明显影响B.过采样少数类别的样本可以增加其数量,但可能导致过拟合C.欠采样多数类别的样本能够平衡数据集,但会丢失部分有用信息D.类别不均衡问题无法通过数据处理方法解决,只能通过改进分类算法来应对5、计算机视觉在智能交通系统中的应用可以优化交通流量和提高安全性。假设要通过计算机视觉监测道路上的车辆拥堵情况。以下关于计算机视觉在智能交通中的描述,哪一项是错误的?()A.可以通过车辆检测和计数来评估道路的拥堵程度B.能够识别车辆的类型和行驶方向,为交通管理提供数据支持C.计算机视觉在智能交通中的应用完全不受恶劣天气和光照条件的影响D.可以与交通信号控制系统联动,实现自适应的交通信号配时6、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下关于图像采集设备的选择,哪一项是最为关键的?()A.选择高分辨率的数码相机,获取清晰的图像B.选用具有大景深的镜头,确保整个电路板都清晰成像C.采用高速摄像机,快速采集大量图像D.选择价格低廉的图像采集设备,降低成本7、计算机视觉中的图像修复是填补图像中的缺失或损坏部分。假设我们有一张老照片,其中部分区域被损坏,需要进行修复。以下哪种图像修复方法能够生成自然、合理的内容,与周围区域融合良好?()A.基于纹理合成的修复方法B.基于插值和填充的修复方法C.基于深度学习的图像修复网络,如ContextEncoderD.基于图像分解和重构的修复方法8、在计算机视觉的三维重建任务中,例如从多视角图像恢复物体的三维形状,需要解决相机位姿估计、特征匹配等问题。以下哪种方法在相机位姿估计方面可能具有更高的精度?()A.基于直接线性变换的方法B.基于BundleAdjustment的方法C.基于特征点的方法D.基于深度学习的方法9、计算机视觉中,以下哪种技术常用于图像的超分辨率重建的损失函数?()A.L1损失B.L2损失C.感知损失D.以上都是10、计算机视觉中的语义分割旨在为图像中的每个像素分配一个类别标签。假设要对医学影像中的肿瘤区域进行语义分割,以下关于模型评估指标的选择,哪一项是最为关键的?()A.准确率,即正确分类的像素比例B.召回率,即正确分割出肿瘤像素的比例C.F1分数,综合考虑准确率和召回率D.平均交并比(MIoU),衡量分割结果与真实标签的重合程度11、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估12、对于视频中的异常检测任务,假设要在一段监控视频中检测出异常事件,如闯入、打斗等。以下哪种方法可能更有助于准确检测异常?()A.建立正常行为模型,对比检测异常B.只关注视频中的显著运动区域C.随机判断视频中的帧是否异常D.不进行异常检测,直接忽略异常事件13、在计算机视觉的图像配准任务中,假设要将两张不同视角拍摄的同一物体的图像进行对齐。以下关于图像配准方法的描述,正确的是:()A.基于特征点的配准方法对图像的旋转、缩放和平移具有不变性,但特征点的提取容易出错B.基于灰度的配准方法计算简单,但对光照变化和噪声敏感C.深度学习中的自监督学习方法在图像配准中无法学习到有效的特征表示D.图像配准的精度只取决于配准算法的选择,与图像的质量和特征无关14、计算机视觉在医学影像分析中的应用有助于辅助医生进行诊断和治疗。假设要分析一张脑部CT图像,以下关于医学影像分析中的计算机视觉应用的描述,哪一项是不正确的?()A.可以通过分割脑组织、检测病变区域等方法,为医生提供定量的分析结果B.深度学习模型能够自动学习医学影像中的特征,辅助医生发现潜在的疾病C.计算机视觉在医学影像分析中的应用需要遵循严格的医学伦理和法规D.计算机视觉系统可以完全替代医生的诊断,不需要医生的进一步审查和判断15、计算机视觉在医疗手术中的应用可以为医生提供辅助和支持。假设在一个微创手术中,计算机视觉用于引导手术器械。以下关于计算机视觉在医疗手术中的描述,哪一项是不正确的?()A.可以通过实时图像分析,为医生提供器械与组织的相对位置和姿态信息B.能够对手术区域进行精准的分割和标注,帮助医生识别关键结构C.计算机视觉在医疗手术中的应用已经非常成熟,不存在任何风险和误差D.可以与机器人手术系统结合,实现更精确和稳定的手术操作16、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息17、在计算机视觉的图像分割任务中,假设要对细胞图像进行精细分割。以下关于模型选择的考虑因素,哪一项是不准确的?()A.模型对细胞边界的捕捉能力B.模型在小样本数据上的泛化能力C.模型的训练时间和计算资源需求D.模型的知名度和在学术圈的引用次数18、计算机视觉中的工业检测任务需要检测产品的缺陷和瑕疵。假设要在生产线上对一批电子产品的外观进行检测,要求快速准确地发现微小的缺陷。以下哪种工业检测方法在处理这种高精度要求的任务时最为适用?()A.机器视觉检测B.人工目检C.抽样检测D.基于统计的检测19、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能20、计算机视觉在文物保护和修复中的应用可以帮助记录和分析文物的状态。假设要对一件古老的雕塑进行数字化保存和修复建议。以下关于计算机视觉在文物保护中的描述,哪一项是错误的?()A.可以通过三维扫描技术获取文物的精确形状和表面细节B.能够对文物的颜色和纹理进行分析,为修复提供参考C.计算机视觉可以完全替代人工的文物修复工作,保证修复的质量和效果D.可以建立文物的数字档案,方便后续的研究和展示二、简答题(本大题共3个小题,共15分)1、(本题5分)计算机视觉中如何辅助疾病检测和诊断?2、(本题5分)简述图像的几何变换有哪些及用途。3、(本题5分)简述图像的色彩抖动技术。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某音乐工作室的品牌标识设计,观察其如何通过独特的图形和字体,传达工作室的音乐风格和专业形象。2、(本题5分)一款文具的包装设计简约而实用,符合学生群体的需求。请剖析包装在图案设计、材质选择、开启方式上的考虑,以及如何在众多竞品中脱颖而出。3、(本题5分)以一款游戏的更新公告页面设计为例,分析其如何运用视觉语言和文字内容传达游戏更新的内容和亮点,吸引玩家关注和参与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论