版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page新高考新结构命题下的导数解答题综合训练(11类核心考点精练)在新课标、新教材和新高考的“三新”背景下,高考改革又一次具有深度的向前推进。这不仅仅是一场考试形式的变革,更是对教育模式和教育理念的全面革新。当前的高考试题设计,以“三维”减量增质为核心理念,力求在减少题目数量的同时,提升题目的质量和考查的深度。这具体体现在以下三个方面:三考题目设计着重考查学生的知识主干、学习能力和学科素养,确保试题能够全面、客观地反映学生的实际水平。三重强调对学生思维深度、创新精神和实际应用能力的考查,鼓励学生不拘泥于传统模式,展现个人的独特见解和创造力。三突出试题特别突出对学生思维过程、思维方法和创新能力的考查,通过精心设计的题目,引导学生深入思考和探索,培养逻辑思维和创新能力。面对新高考新结构试卷的5个解答题,每个题目的考查焦点皆充满变数,无法提前预知。导数版块作为一个重要的考查领域,其身影可能悄然出现在第15题中,作为一道13分的题目,难度相对较为适中,易于学生入手。然而,同样不能忽视的是,导数版块也可能被置于第18、19题这样的压轴题中,此时的分值将提升至17分,挑战学生的解题能力和思维深度,难度自然相应加大。面对如此多变的命题趋势,教师在教学备考过程中必须与时俱进。不仅要深入掌握不同题目位置可能涉及的知识点及其命题方式,更要能够灵活应对,根据试题的实际情况调整教学策略。本文基于新高考新结构试卷的特点,结合具体的导数解答题实例,旨在为广大师生提供一份详尽的导数解答题综合训练指南,以期在新高考中取得更好的成绩。考点一、利用导数研究具体函数的单调性1.(2024·湖南邵阳·三模)已知函数.(1)求函数的单调递增区间;(2)若函数有且仅有三个零点,求的取值范围.【答案】(1)(2)【分析】(1)利用求导,导数值大于0来求单调递增区间即可;(2)利用函数的单调性和取值情况,分析可得的取值范围.【详解】(1)由,得,令,得,解得.所以的单调递增区间为(2)令,解得或.当变化时,,的变化情况如下表所示:0200单调递减1单调递增单调递减由函数有且仅有三个零点,得方程有且仅有三个不等的实数根,所以函数的图象与直线有且仅有三个交点.显然,当时,;当时,.所以由上表可知,的极小值为,的极大值为,故.2.(2024·浙江·三模)已知函数.(1)求函数的单调区间;(2)若曲线在点处的切线与二次曲线只有一个公共点,求实数a的值.【答案】(1)单调增区间:,单调减区间:.(2)或.【分析】(1)利用导数求函数的单调区间;(2)首先求出函数的切线方程,与曲线联立方程,分析得出结论.【详解】(1)易知定义域为R,,所以,,,.故单调增区间:,单调减区间:.(2)因为,,所以曲线在点处的切线为把切线方程代入二次曲线方程,得有唯一解,即且,即解得或.3.(2024·湖南邵阳·三模)已知函数(1)若,求的单调区间.(2)若对,恒成立,求实数的取值范围【答案】(1)的单调递增区间为,单调递减区间为(2)【分析】(1)求导,根据导函数的符号判断原函数的单调区间;(2)分析可知原题意等价于对,恒成立,构建,利用导数判断的单调性和最值,结合恒成立问题分析求解.【详解】(1)若,则的定义域为,且,令,解得;令,解得;所以的单调递增区间为,单调递减区间为.(2)因为,则,所以原题意等价于对,恒成立,构建,则,令,则对恒成立,可知在内单调递增,且,可知在内存在唯一零点,当时,,即;当时,,即;可知在内单调递减,在内单调递增,则,且,可得,则,可得,所以实数的取值范围为.4.(2024·陕西渭南·二模)已知函数,.(1)求函数的单调区间;(2)若当时,恒成立,求实数m的取值范围.【答案】(1)递减区间为,无递增区间;(2).【分析】(1)求出函数,再利用导数求出的单调区间.(2)等价变形给定不等式得,令并求出值域,再换元并分离参数构造函数,求出函数的最小值即得.【详解】(1)依题意,函数的定义域为,求导得,当且仅当时取等号,即在上单调递减,所以函数的递减区间为,无递增区间.(2)当时,恒成立,令,求导得,当时,,当时,,即函数在上递减,在上递增,则当时,,令,依题意,,恒成立,令,求导得,则函数在上单调递增,当时,,因此,所以实数m的取值范围.【点睛】关键点点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用导数探求函数单调性、最值是解决问题的关键.5.(2024·湖南衡阳·模拟预测)函数.(1)当时,讨论的单调性;(2)在上单调递增,求的取值范围.【答案】(1)在上单调递增;(2)【分析】(1)求导之后再对分析即可得到单调性;(2)在上单调递增得,然后转化为,即.【详解】(1)当时,,的定义域为,∴,令,则,令,即,当时,,单调递减;当时,,单调递增;∴,∴在上成立,∴在上单调递增.(2)∵在上单调递增,∴,恒成立,,恒成立,即,恒成立.令,则.∵,当时,,单调递减;当时,,单调递增;∴取得最小值.∴,.∴实数的取值范围为.6.(2024·广东佛山·二模)已知.(1)当时,求的单调区间;(2)若有两个极值点,,证明:.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令,,,可得、是方程的两个正根,借助韦达定理可得,,即可用、表示,进而用表示,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当时,,,则当,即时,,当,即时,,故的单调递减区间为、,单调递增区间为;(2),令,即,令,,则、是方程的两个正根,则,即,有,,即,则,要证,即证,令,则,令,则,则在上单调递减,又,,故存在,使,即,则当时,,当时,,故在上单调递增,在上单调递减,则,又,则,故,即,即.【点睛】关键点点睛:本题关键点在于借助换元法,令,,,从而可结合韦达定理得、的关系,即可用表示,构造相关函数后借助导数研究其最大值即可得.7.(2024·河北保定·二模)已知函数.(1)若,讨论的单调性;(2)已知存在,使得在上恒成立,若方程有解,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2).【分析】(1)求出函数的定义域与导函数,令,判断的单调性,即可得到的取值情况,从而得到的单调区间;(2)求出函数的导函数,即可判断导函数的单调性,依题意可得,即可得到,设,依题意可得有解,利用导数说明的单调性,即可得到,从而得到,再令,利用导数求出的单调性,即可求出函数的极值与区间端点的函数值,从而求出参数的取值范围.【详解】(1)函数的定义域为,当时,,所以,设,因为、都在上单调递增,所以在上单调递增,且,所以时,单调递减;时,单调递增.所以在上单调递减,在上单调递增.(2)由,,得,因为、都在上单调递增,所以在上单调递增,已知存在,使得在上恒成立,所以是的最小值,所以,即,所以,所以,设,由方程有解,得有解,即有解,因为在上恒成立,所以在上单调递减,所以,则,设,则,所以时,单调递增,时,单调递减,又,所以,即的取值范围是.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.8.(2024·全国·模拟预测)已知函数.(1)若,求的单调区间;(2)若,的最小值为,求证:.【答案】(1)单调递减区间为,单调递增区间为(2)证明见解析.【分析】(1)求导,根据的单调性以及,即可求解导数的正负,进而可求解的单调性,(2)构造函数,求导证明,当且仅当时等号成立.即可根据,求解的最小值为2,结合零点存在性定理可得,即可求解.【详解】(1)由题知,的定义域为.当时,,所以.设,易知在上单调递增,又,故当时,,即,当时,,即,所以的单调递减区间为,单调递增区间为.(2)当时,,设,则,当时,,当时,,所以在上单调递减,在上单调递增,故,所以,当且仅当时等号成立.所以,当且仅当时等号成立,故的最小值,且.记,易知在上单调递增,则是的唯一零点.因为,,所以所以.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9.(2024·浙江·模拟预测)已知函数.(1)当时,求的单调区间;(2)当时,判断的零点个数.【答案】(1)减区间为,增区间为;(2)2个.【分析】(1)求导,当时,利用指数函数性质和余弦函数有界性可判断导数符号,当时,利用二次导数判断导函数单调性,然后可得导函数符号;(2)当时,利用二次导数判断的单调性,当时,利用指数函数性质和正弦函数有界性可判断函数值符号,当时,记,利用导数研究其图象,根据与的图象交点个数判断即可.【详解】(1)当时,,所以,当时,,所以,则,所以,在上单调递减.当时,记,则,因为,所以,在单调递增,所以,即,所以在上单调递增.综上,的减区间为,增区间为.(2)当时,,则,
记,则,当时,,所以,在单调递增,所以,在上单调递增,所以,在上无零点.当时,因为,所以,此时无零点.当时,记,则,因为当趋近于0时,趋近于0,所以的变化越来越慢,图象下凹,当时,,当时,,作出函数和的图象如图,由图可知,当时,两个函数图象有一个交点,即有一个零点.易知是的一个零点.综上,函数共有2个零点.10.(2024·全国·模拟预测)已知函数.(1)若,讨论的单调性.(2)若,,求证:.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)利用二次导数判断的单调性,结合即可求解;(2)当时,利用导数通过证明即可;当时,利用零点存在性定理判断的零点,再由零点方程化简整理得的最小值,然后由零点的范围即可求解.【详解】(1)当时,,定义域为,则.设,则,所以在上单调递增,且,所以,当时,,单调递减,当时,,单调递增,所以在上单调递减,在上单调递增.(2)因为,所以.因为,所以在上单调递增,且.①若,则,所以当时,恒成立,单调递增.又,所以;②若,则,,所以存在,使得,即.当时,,单调递减,当时,,单调递增,所以.因为在上单调递减,所以,所以.综上所述,当,时,.【点睛】思路点睛:证明,一般可以考虑证明,若有最小值,但无法具体确定,这种情况下一般是先把的最小值转化为关于极值点的一个函数,再根据极值点的取值范围,确定最小值的取值范围.考点二、利用导数研究含参函数的单调性1.(2024·广东汕头·三模)已知函数.(1)求函数的单调区间;(2)若恒成立,求的最小值.【答案】(1)答案见详解(2)【分析】(1)求导后,利用导数与函数单调性的关系,对与分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)(),当时,由于,所以恒成立,从而在上递增;当时,,;,,从而在上递增,在递减;综上,当时,的单调递增区间为,没有单调递减区间;当时,的单调递增区间为,单调递减区间为.(2)令,要使恒成立,只要使恒成立,也只要使.,若,,所以恒成立,当时,,当时,,可知在内单调递增,在内单调递减,所以,解得:,可知的最小值为;若,,所以恒成立,当时,,当时,,可知在内单调递减,在内单调递增,所以在内无最大值,且当趋近于时,趋近于,不合题意;综上所述:的最小值为.2.(2024·陕西榆林·模拟预测)已知函数,其中.(1)讨论函数的单调性;(2)当时,证明:.【答案】(1)答案见解析(2)证明见解析【分析】(1)就、分类讨论导数的符号后可得函数的单调性;(2)原不等式等价于,当时,可由各式符号证明此不等式成立,当时,设,利用导数可证明恒成立,据此可得的单调性,从而可得原不等式成立.【详解】(1),,当时,,函数在上单调递增;当时,由,得,函数在区间上单调递增,由,得,函数在区间上单调递减.综上,当时,在上单调递增,无减区间.当时,在上单调递增,在上单调递减.(2)当时,,要证,即证,①当时,,,;②当时,令,则,设,则,,,,,,在上单调递增,,即,在上单调递增,,即.综上,当时,.【点睛】思路点睛:导数背景下不等式恒成立,应该根据不等式中含有的函数的类型进行合理的分类讨论,特别是含有三角函数式时,可根据其值域选择分类讨论的标准.3.(2024·江苏苏州·模拟预测)已知函数.(1)讨论的单调性;(2)当时,证明:.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(2)要证明,只要证即可,设,利用导数求得最值即可证明.【详解】(1)函数的定义域为,且.当时,恒成立,所以在区间上单调递增;当时,令,解得,当时,在区间上单调递增,当时,在区间上单调递减.综上所述,当时,在区间上单调递增;当时,在区间上单调递增,在区间上单调递减.(2)当时,因为,所以要证,只要证明即可,即要证,等价于(*).令,则,在区间上,单调递减;在区间上,单调递增,所以,所以(当且仅当时等号成立),所以(*)成立,当且仅当时,等号成立.又在上单调递增,,所以存在,使得成立.综上所述,原不等式成立.4.(2024·黑龙江哈尔滨·模拟预测)已知函数().(1)讨论的单调性;(2)当时,求证:.【答案】(1)当时,函数在区间上单调递减;当时,函数在区间单调递减,在区间单调递增.(2)证明见解析;【分析】(1)求出函数的导数,通过对分类讨论,即可求出函数的单调性;(2)根据(1)结论判断函数的单调性,并求出最小值,再通过最小值与在指定区间作比较即可得证.【详解】(1)由题意可知,函数的定义域为,导数,当时,,;当时,,;;综上,当时,函数在区间上单调递减;当时,函数在区间上单调递减,在区间上单调递增.(2)由(1)可知,当时,函数在区间上单调递减,在区间上单调递增.所以函数,要证,需证,即需证恒成立.令,则,所以函数在区间单调递减,故,所以恒成立,所以当时,.5.(2024·山西吕梁·三模)已知函数.(1)讨论函数的单调性;(2)若对任意的,使恒成立,则实数的取值范围.【答案】(1)答案见解析(2)【分析】(1)由,定义域为,求导,令,讨论当取不同的值时的正负情况,即可得到的单调性;(2)法一:由可化为,令,讨论取正、负、零时恒成立,即可得到实数的取值范围;法二:由可得,令,即恒成立,由,则令,则恒成立,讨论取正、负、零时的单调情况,得到极值,即可得到实数的取值范围.【详解】(1)的定义域为,令,又,,当,即时,,此时在上单调递增,当,即时,令,解得其中,当时,所以在单调递增,在单调递减;当时,,故在单调递减,单调递增.综上:在上单调递增;在上单调递增;在上单调递减,在上单调递增.(2)法一:不妨设,则,同除以得,所以令,当时,恒成立,,若恒成立,符合题意,,当恒成立,令则,所以在单调递增,在单调递减,所以,所以,,若,同理恒成立,由知,当所以不存在满足条件的.综上所述:.法二:.令,则只需在单调递增,即恒成立,,令,则恒成立;又,①当时,在单调递增成立;②当时,在单调递增,又,故不恒成立.不满足题意;③当时,由得在单调递减,在单调递增,因为恒成立,所以,解得,综上,.6.(2024·广东东莞·模拟预测)已知函数.(1)求函数的单调区间;(2)当时,求函数在区间上的最大值.【答案】(1)答案见解析(2)答案见解析【分析】(1)利用导数,分类讨论求区间;(2)结合(1)得到的函数单调性,分类讨论函数最大值.【详解】(1)的定义域为,求导数,得,若,则,此时在上单调递增,若,则由得,当时,,在上单调递减,当时,,在上单调递增,综上,当,的增区间为,无减区间,若,减区间为,增区间为.(2)由(1)知,当时,在区间上为增函数,函数的最大值为,当时,在区间上为减函数,函数的最大值为,当时,在区间上为减函数,在上为增函数,函数的最大值为,由,得,若时,函数的最大值为,若时,函数的最大值为,综上,当时,函数的最大值为,当时,函数的最大值为.7.(2024·宁夏吴忠·模拟预测)已知函数.(1)讨论的单调性;(2)证明:当时,.【答案】(1)在上单调递减,在上单调递增(2)证明见解析【分析】(1)求导后,结合导数正负与单调性的关系,分及讨论即可得;(2)原问题可转化为证明当时,,构造函数后,利用导数可得该函数的单调性,即可得其最小值,即可得证.【详解】(1)由题意知,当时,,所以在上单调递减;
当时,令,解得,令,解得,所以在上单调递减,在上单调递增(2)由(1)得,
要证,即证,即证,令,则,
令,解得,令,解得,所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,.8.(2024·山东青岛·二模)已知函数.(1)证明曲线在处的切线过原点;(2)讨论的单调性;【答案】(1)证明见解析(2)答案见解析【分析】(1)可求得切点为,斜率,则切线方程为,则恒过原点;(2)首先求函数的导数,当时,和,可得的单调区间;当时,令,当时由的判别式和,讨论出函数的单调区间;当时,的判别式,讨论出函数的单调区间.【详解】(1)由题设得,所以,又因为,所以切点为,斜率,所以切线方程为,即恒过原点.(2)由(1)得,当时,,当时,,在上单调递增,当时,,在上单调递减;当时,令,则,当且时,即时,,在上单调递增,当时,,由,则,或,则,所以在上单调递增,在上单调递增;由,则,则,所以在上单调递减;当时,,则为开口向下的二次函数,对称轴,,,由,则,则,所以在上单调递增,由,则,则,所以在上单调递减;综上:当时,在上单调递增,在上单调递减;当时,在上单调递增;当时,在上单调递增,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.9.(2024·辽宁沈阳·模拟预测)已知函数.(1)求函数的单调区间;(2)若,求函数在区间上的零点个数.【答案】(1)答案见解析(2)答案见解析【分析】(1)求导,再分和两种情况讨论即可得解;(2)结合(1)分,和两种情况讨论,求出函数的单调区间及极值,再结合零点的存在性定理即可得解.【详解】(1)定义域为,由题意得,当时,恒成立,所以在上单调递增.当时,由,得,由,得,所以在上单调递减,在上单调递增,综上所述,当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2),由(1)知当时,在上恒成立,所以在上单调递增,因为,,所以由零点存在性定理知,函数在上有1个零点;当时,若,则,若,则,所以在上单调递减,在上单调递增,可得,当时,,此时在上有1个零点,当时,,因为当时,,,所以此时在上有2个零点,当时,,此时在上无零点,综上,当或时,在上有1个零点;当时在上有2个零点;当时在上无零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.10.(2024·新疆·三模)已知函数.(1)讨论的单调性;(2)若有三个不同的零点,求实数的取值范围.【答案】(1)答案见解析(2)【分析】(1)对函数求导后,分,,,四种情况讨论导数的正负,从而可求出函数的单调区间;(2)由(1)可知当时,可能有三个不同的零点,然后分和两种情况结合零点存在性定理与函数的单调性讨论零点的个数.【详解】(1)因为的定义域为,且,当时,令,解得;令,解得,所以在上单调递减,在上单调递增;当时,时恒成立,当且仅当时等号成立,所以在上单调递增;当时,,令,解得,令,解得或,所以在上单调递增,在上单调递减,在上单调递增;当时,,令,解得,令,解得或,所以在上单调递增,在上单调递减,在上单调递增.综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减,在上单调递增;当时,在上单调递增;当时,在上单调递增,在上单调递减,在上单调递增.(2)由(1)得,当时,至多有两个零点,不符题意;当时,至多有一个零点,不符题意;当时,的极大值,至多有一个零点,不符题意;当时,的极小值,的极大值,至多有两个零点,不符题意;当时,因为在上单调递增,且,,所以在上有且只有一个零点,因为在上单调递减,,且,所以在上有且只有一个零点,因为在上单调递增,,令,则,令,则,因为当时,,所以在上递增,即在上递增,所以,所以在上递增,所以,所以在上恒成立,所以,所以,故在上有且只有一个零点,所以有三个零点,综上,当时,有三个不同的零点.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的单调区间,考查利用导数解决函数零点问题,第(2)问解题的关键是当时,结合(1)当时,的单调区间和零点存在性定理分析判断,考查数学转化思想和计算能力,属于难题.考点三、利用导数求极值与最值1.(2024·广东东莞·模拟预测)已知函数.(1)求函数的单调区间;(2)当时,求函数在区间上的最大值.【答案】(1)答案见解析(2)答案见解析【分析】(1)利用导数,分类讨论求区间;(2)结合(1)得到的函数单调性,分类讨论函数最大值.【详解】(1)的定义域为,求导数,得,若,则,此时在上单调递增,若,则由得,当时,,在上单调递减,当时,,在上单调递增,综上,当,的增区间为,无减区间,若,减区间为,增区间为.(2)由(1)知,当时,在区间上为增函数,函数的最大值为,当时,在区间上为减函数,函数的最大值为,当时,在区间上为减函数,在上为增函数,函数的最大值为,由,得,若时,函数的最大值为,若时,函数的最大值为,综上,当时,函数的最大值为,当时,函数的最大值为.2.(2024·江苏南京·二模)已知函数,其中.(1)当时,求曲线在处的切线方程;(2)当时,若在区间上的最小值为,求a的值.【答案】(1)(2)【分析】(1)由,分别求出及,即可写出切线方程;(2)计算出,令,解得或,分类讨论的范围,得出的单调性,由在区间上的最小值为,列出方程求解即可.【详解】(1)当时,,则,,所以,所以曲线在处的切线方程为:,即.(2),令,解得或,当时,时,,则在上单调递减,所以,考虑,,当时,,单调递增,当时,,单调递减,所以的极大值为,所以由得;当时,时,,则在上单调递减,时,,则在上单调递增,所以,则,不合题意;当时,时,,则在上单调递减,所以,不合题意;综上,.3.(2024·河南·模拟预测)已知函数.(1)求的极大值;(2)若,求在区间上的零点个数.【答案】(1)答案见解析(2)2025个零点【分析】(1)求导,分析函数的单调性,分情况讨论,求函数的极大值.(2)先分析方程在上解得个数,再分析在上解的个数,进一步考虑方程在上解的个数,可得问题答案.【详解】(1)由题易得,函数的定义域为,又,所以,当时,随的变化情况如下表:0200极小值极大值由上表可知,的单调递增区间为,单调递减区间为.所以的极大值为.当时,随的变化情况如下表:0200极大值极小值由上表可知,的单调递增区间为,单调递减区间为.所以的极大值为.综上所述,当时,的极大值为;当时,的极大值为0.(2)方法一:当时,,所以函数.由,得.所以要求在区间上的零点的个数,只需求的图象与的图象在区间上的交点个数即可.由(1)知,当时,在上单调递减,在上单调递增,所以在区间上单调递减.又在区间上单调递增,且,所以与的图象在区间上只有一个交点,所以在区间上有且只有1个零点.因为当时,,在区间上单调递增,在区间上单调递减,所以在区间上有极大值,即当时,恒有.又当时,的值域为,且其最小正周期为,现考查在其一个周期上的情况,在区间上单调递增,在区间上单调递减,且,,所以与的图象在区间上只有一个交点,即在区间上有且只有1个零点.因为在区间上,,所以与的图象在区间上无交点,即在区间上无零点.在区间上,单调递减,单调递增,且,所以与的图象在区间上只有一个交点,即在区间上有且只有1个零点.所以在一个周期上有且只有2个零点.同理可知,在区间上,且单调递减,在区间上单调递减,在区间上单调递增,且,,所以与的图象在区间和上各有一个交点,即在上的每一个区间上都有且只有2个零点.所以在上共有个零点.综上可知,在区间上共有个零点.方法二:当时,,所以函数.当时,,所以在区间上单调递减.又,所以存在唯一零点,使得.所以在区间上有且仅有一个零点.当时,,所以.所以在上无零点.当时,,所以在区间上单调递增.又,所以存在唯一零点.当时,,设,则所以在上单调递增.又,所以存在,使得.即当时,单调递减;当时,单调递增.又,所以在区间上有且仅有一个零点所以在区间上有且仅有一个零点.当时,,设,则所以在上单调递增.又,所以在区间上单调递减:又,所以存在唯一,使得.所以在区间上有且仅有一个零点.所以在区间上有两个零点.所以在上共有个零点.综上所述,在区间上共有个零点.【点睛】方法点睛:导函数求解函数零点个数问题,要利用导函数研究函数的单调性,进而求出函数的极值情况,结合特殊点的函数值的正负,零点存在性定理进行求解.4.(2024·湖南长沙·三模)已知函数().(1)求函数的极值;(2)若集合有且只有一个元素,求的值.【答案】(1)极大值是,无极小值;(2).【分析】(1)利用求导,通过参数,可分析出为正负的区间,从而可以判断的极值;(2)利用不等式有唯一解,则正好是最大值取到等号,再去分析取等号的含参方程有解的条件,所以重新构造新的函数,通过求导来研究函数的零点和方程的解.【详解】(1)由,因为,所以的定义域为,则,因为时,;时,.所以的单调递增区间为;单调递减区间为,所以是的极大值点,的极大值是,无极小值.(2)由(1)可得,要使得集合有且只有一个元素,则只需要设,则,因为时,;时,,所以的单调递减区间为;单调递增区间为.所以,所以关于的方程有解时,只能是,所以集合有且只有一个元素时.5.(2024·河北保定·三模)已知函数,为的极值点.(1)求a;(2)证明:.【答案】(1)3;(2)证明见解析;【分析】(1)求导,由求解;(2)转化为证,令,由证明.【详解】(1)解:,依题意,,解得,经检验符合题意,所以;(2)由(1)可知,,要证,即证,设,则,所以当时,,单调递减,当时,,单调递增,当时,取得极小值,也是最小值,因为,,所以.【点睛】方法点睛:证明不等式,往往由证明.6.(2024·北京顺义·三模)已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:函数存在极小值;(3)求函数的零点个数.【答案】(1)(2)证明见解析(3)答案见解析【分析】(1)求出函数的导数,再利用导数的几何意义求解作答.(2)讨论函数在区间和上的符号即可推理作答.(3)在时,分离参数,构造函数,再探讨在上的零点情况即可作答.【详解】(1)由函数求导得:,所以,因为,所以曲线在点处的切线方程是.(2)函数的定义域为,由(1)知,,因为,则当时,,,,所以,有,函数在上递减,当时,,,,则有,函数在上递增,所以,当时,函数取得极小值,所以,当时,函数存在极小值.(3)函数的定义域为,,显然是函数的零点,当时,函数的零点即为方程的解,令,则,令,则,当时,,当时,,所以函数在上递增,在上递减,,,所以,有,在,上都递减,令,,当时,,当时,,所以,在上递增,在上递减,,所以,,恒有,当且仅当时取“=”,所以,当时,,当时,,所以,在上单调递减,取值集合为,在上递减,取值集合为,所以,当或时,方程有唯一解,当或时,此方程无解,所以,当或时,函数有一个零点,当或时,函数有两个零点.【点睛】思路点睛:涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.7.(2024·广西贵港·模拟预测)已知函数.(1)当时,请判断的极值点的个数并说明理由;(2)若恒成立,求实数a的取值范围.【答案】(1)有一个极值点,理由见解析(2)【分析】(1)先求,得,再设,通过对符号的分析,得到的单调性,再判断的解的情况,分析函数的极值点的情况.(2)先把原不等式化成恒成立,利用换元法,设,则,问题转化为恒成立.再设,利用(1)的结论求的最小值.【详解】(1)当时,,,所以,令,则,当时,,在上单调递增,又,,存在唯一零点,且,当时,,在上单调递减,当时,,在单调递增.有一个极小值点,无极大值点.(2)恒成立,恒成立,恒成立.令,则,恒成立.设,由(1)可知的最小值为.又,.(﹡)设,当时,,在上单调递增,,,,由(﹡)知,,即.,,,又,a的取值范围为.【点睛】关键点点睛:该题第二问的关键是求函数的最小值,由(1)得的极小值是,而的值不能准确的表示出来,所以根据进行代入计算.8.(2024·吉林·模拟预测)已知函数.(1)当时,求函数的极值;(2)求证:当时,.【答案】(1)极大值,极小值0.(2)证明见解析【分析】(1)对函数求导后,由导数的正负求出函数的单调区间,从而可求出函数的极值;(2)对函数求导后,由导数的正负求出函数的单调区间,求出,然后将问题转化为证,证法一:转化为证,构造函数,利用导数求其最大值小于1即可,证法二:转化为证,构造函数,利用导数求其最大值小于0即可.【详解】(1)当时,令得或,当变化时,与变化如下表:0单调递增单调递减0单调递增故当时,取得极大值;当时,取得极小值0(2)令,则,当变化时,与变化如下表:0单调递减单调递增故.要证当时,.证法一:只需证当时,,即令,则在上单调递减故,即式成立,原不等式成立.证法二:只需证当时,,即令,则令,则在上单调递减.在上单调递减,即式成立,原不等式成立.【点睛】关键点点睛:此题考查利用导数求函数的极值,考查利用导数证明不等式,第(2)问解题的关键是利用导数求出,然后将问题转化为证,考查数学转化思想和计算能力,属于较难题.9.(2024·四川攀枝花·三模)已知函数.(1)求函数的极值;(2)设函数的导函数为,若(),证明:.【答案】(1)答案见解析(2)证明见解析【分析】(1)求得,得出函数的单调性,结合极值的概念,即可求解;(2)由,得到,求得,得到,化简得到,设,利用函数的导数求解函数的最小值,即可求解.【详解】(1)解:由函数,可得其定义域为,且,当时,,函数在上单调递增,无极值;当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减,当时,函数取得极小值,极小值为,无极大值.(2)证明:由(1)知,,可得,且,所以,所以,因为,所以,可得,则,因为,所以,记得,所以,设,可得,当时,,在上单调递减;当时,,在上单调递增,所以,当时,,所以,所以,即.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.10.(2024·陕西铜川·模拟预测)已知函数的一个极值为.(1)求实数的值;(2)若函数在区间上的最大值为18,求实数与的值.【答案】(1)或5(2)实数的值为的值为5【分析】(1)通过求导,根据导数的正负得到极值点,根据极值为解出的值;(2)根据上的单调性,分,,,四种情况讨论的最大值,只有中存在符合题意,令最大值为18,求得和的值.【详解】(1)由,得,令,得或;令,得;令,得或.所以函数有两个极值和.若,得,解得;若,得,解得.综上,实数的值为-22或5.(2)由(1)得,在区间的变化情况如下表所示:1+0-0+极大值极小值由表可知,①当时,函数在区间上单调递增,所以最大值为,其值为或,不符合题意;②当时,函数在上单调递减,在上单调递增,因为,,,所以在上的最大值为,其值为或25,不符合题意;③当时,函数在上单调递增,在上单调递减,在上单调递增,因为,,,所以在上的最大值为,其值为或25,不符合题意;④当时,在上单调递减,在上单调递增,若在区间上的最大值为,其值为或,不符合题意,又因为若,则.那么,函数在区间上的最大值只可能小于-2,不合题意,所以要使函数在区间上的最大值为18,必须使,且,即.所以,所以.所以,所以.所以或,所以或.因为,所以舍去.综上,实数的值为的值为5.【点睛】方法点睛:函数在闭区间上的最值通过求导,根据导数的正负得到函数的单调性,从而函数的最大值在极大值和端点值中取大,函数的最小值在极小值和端点值中取小.考点四、利用导数证明不等式1.(2024·广西·模拟预测)设函数,曲线在点处的切线方程为.(1)求的值;(2)证明:.【答案】(1)(2)证明见解析【分析】(1)由题意可得,即可得解;(2)构造函数,利用导数求出函数的最小值,即可得证.【详解】(1)函数的定义域为,将代入,解得,即,由切线方程,可知切线斜率,故,解得;(2)由(1)知,要证,即证.设,则,令,解得,或(舍去),当时,单调递减;当时,单调递增;所以,所以,即.2.(2024·江苏苏州·模拟预测)已知函数.(1)讨论的单调性;(2)当时,证明:.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(2)要证明,只要证即可,设,利用导数求得最值即可证明.【详解】(1)函数的定义域为,且.当时,恒成立,所以在区间上单调递增;当时,令,解得,当时,在区间上单调递增,当时,在区间上单调递减.综上所述,当时,在区间上单调递增;当时,在区间上单调递增,在区间上单调递减.(2)当时,因为,所以要证,只要证明即可,即要证,等价于(*).令,则,在区间上,单调递减;在区间上,单调递增,所以,所以(当且仅当时等号成立),所以(*)成立,当且仅当时,等号成立.又在上单调递增,,所以存在,使得成立.综上所述,原不等式成立.3.(2024·河北沧州·模拟预测)已知函数.(1)求的值域;(2)求证:当时,.【答案】(1)(2)证明见解析【分析】(1)令,可得,,求导可证结论;(2)令函数,,利用导数可证当时,,结合(1)可得,从而得到,进而得证.【详解】(1),,令,则,,则,令,,则,所以函数在上单调递增,所以,即,故的值域为.(2)令函数,,则,所以在上单调递增,所以,故当时,,所以.由(1)知,当1时,所以当时,,所以,令,其中,,2,3,,n,则,所以,,,,,以上n个式子相加得,即当时,.【点睛】关键点点睛:本题解决的关键是,利用(1)中结论与常见不等式得到,从而得证.4.(2024·河北·三模)已知函数.(1)若在恒成立,求实数a的取值范围;(2)证明:.【答案】(1)(2)证明见解析【分析】(1)由题意可得恒成立,令,求导得,利用导数分类可求实数a的取值范围;(2)由(1)知当时,可得在恒成立,当时,可得,利用累加法可得结论.【详解】(1)在恒成立.构造函数,则在恒成立.当时,,所以在上单调递增,所以,矛盾,故舍去当时,由得,所以在上单调递增,故,均有,矛盾,故舍去当时,,所以在上单调递减,所以,满足题意;综上,实数a的取值范围为(2)由(1)知当时,恒成立,即在上恒成立,当且仅当时取等号.所以当时,可得同理,,,两边分别累加得:即即【点睛】关键点点睛:本题第二问的关键是通过(1)中的结论得到,再代入得到其他不等式,最后累加即可证明.5.(2024·四川内江·三模)已知函数.(1)若的图象不在轴的下方,求的取值集合;(2)证明:.【答案】(1)(2)见解析【分析】(1)由题意可得出恒成立,对求导,可得,令,对求导得出的单调性即可证明,即可得出的取值集合;(2)由(1)可知,当时,,可得,即,由累加法可证明,再证明可证得.【详解】(1)的定义域为,所以,当时,,单调递减,当时,,单调递增,所以,因为的图象不在轴的下方,所以恒成立,所以,令,,当时,,单调递增,当时,,单调递减,所以,又因为,,,,所以,故的取值集合为.(2)由(1)可知,当时,,即,即,所以,(当时取等),令,所以,则,所以,故,,…,,由累加法可得:,即,令,恒成立,所以在区间上单调递减,所以,所以,所以,所以.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.6.(2024·河北·模拟预测)已知函数.(1)讨论的单调性;(2)证明:当时,.【答案】(1)答案见解析(2)证明见解析【分析】(1)先明确函数定义域和求导,根据导数结构特征对进行和的分类讨论导数正负即可得单调性.(2)证,故问题转化成证,接着构造函数研究其单调性和最值即可得证.【详解】(1)由题函数定义域为,,故当时,恒成立,所以函数在上单调递减;当时,在上单调递减,令,则时,;时,,所以函数在上单调递增,在上单调递减,综上,当时,函数在上单调递减;当时,函数在上单调递增,在上单调递减.(2)由(1)当时,函数在上单调递增,在上单调递减,故在上恒成立,故证证,即,令,则,故当时,;时,,所以在上单调递增,在上单调递减,所以在上恒成立,故,所以当时,.【点睛】思路点睛:证明含参函数不等式问题通常转化成研究函数最值问题,第(2)问证当时,可将问题转化成证,接着根据其结构特征进行变形转化和构造函数,利用导数确定所构造的函数单调性和最值即可得证.7.(2024·重庆九龙坡·三模)已知函数,.(1)当时,函数恒成立,求实数的最大值;(2)当时,若,且,求证:;(3)求证:对任意,都有.【答案】(1)(2)证明见解析(3)证明见解析【分析】(1)分离参数,函数恒成立,转化为恒成立,令,利用导数讨论的单调性,进而求最值即可求解;(2)利用导数可得当时,在上单调递增,不妨设,要证,只需证即可,结合不等式的特点构造函数,结合导数与单调性关系及函数性质即可证明;(3)结合(2)中的结论,利用赋值及累加法即可证明.【详解】(1)当时,恒成立,即恒成立,只需即可,令,,则,令,,则,当时,恒成立,在单调递增,所以,所以在恒成立,在单调递增,所以,所以,即实数的最大值为.(2)当时,,,所以,在上单调递增,又,且,不妨设,要证,即证明,因为在上单调递增,即证,因为,即证,设,,令,则,则,,由可得,在单调递增,所以,即,所以成立,所以.(3)由(2)可知当时,在单调递增,且,由得,即,令,则,即,所以,,,…,,相加得.【点睛】关键点点睛:考查了导数与单调性关系在恒成立问题,不等式证明中的应用,考查了导数的综合应用,属于难题.8.(2024·陕西·模拟预测)已知函数(),.(1)讨论函数的单调性;(2)证明:();(3)证明:().【答案】(1)答案见解析(2)证明见解析(3)证明见解析【分析】(1)求导,后按照,分类讨论即可;(2)用导数研究函数的最值即可;(3)由(1)的结论可以得到.令,得到,即,结合数列累加法,可得.由(2)知,,每项进行放缩即可证明.【详解】(1)函数的定义域为,,①当时,恒成立,所以函数的单调递减区间为;②当时,由,得,当时,;当时,.所以函数的单调递增区间为,单调递减区间为.综上,当时,函数的单调递减区间为;当时,函数的单调递增区间为,单调递减区间为.(2),恒成立,在上单调递减,又,,.(3)由(1)知,当时,,即,,,(当时“=”成立).令(),,即,,从而,,…,,累加可得,即.由(2)知,在是递减函数,,即,.().9.(2024·江苏连云港·模拟预测)已知函数.(1)求函数在处的切线方程.(2)证明:.【答案】(1)(2)证明见解答【分析】(1)求导可得,又,可求切线方程;(2)求导得,令,再求导,进而判断在上单调递增,可得在上单调递增,,可得结论.【详解】(1)由,可得,,又,所以函数在处的切线方程为,即.(2)由,可得,令,可得,当时,,所以在上单调递增,又,即,所以在上单调递增,所以,当时,,当时,,综上所述:.10.(2024·山东·模拟预测)已知函数,其中.(1)求曲线在点处切线的倾斜角;(2)若函数的极小值小于0,求实数的取值范围;(3)证明:.【答案】(1)0(2)或(3)证明见解析【分析】(1)利用函数乘法求导法则来求函数的导函数并因式分解得,即可求出,从而可求得切线的倾斜角为0;(2)对参数分四种情形,,,进行讨论单调性,从而得到极小值小于0,来求出实数的取值范围;(3)要证明不等式,利用放缩思想对和进行代换,结合分析法证明,把原不等式最后转化为新的不等式,再构造函数进行求最值证明.【详解】(1)由,所以,设曲线在点处切线的倾斜角为,则,又因为,所以,所以曲线在点处切线的倾斜角为0.(2)由(1)知,且,解得:或,当时,,,,,,,所以在上单调递减,在上单调递增,在上单调递减,所以,解得,所以;当时,,,,,,,所以在上单调递增,在上单调递减,在上单调递增,所以,即此时极小值不可能小于0,所以当时不符合题意;当时,恒成立,所以在上单调递增,即函数无极值,不满足题意,所以当时不符合题意;当时,,,,,,,所以在上单调递增,在上单调递减,在上单调递增,所以,解得,所以;综上可知实数的取值范围为或.(3)由(2)知,当时,在上单调递增,在上单调递减,,即,即,两边取自然对数得:,则.要证成立,只需证,.两边同除得:,即.只需证:,即证,令,,,解得:,当时,,在上单调递减,当时,,在上单调递增,所以,即,经检验,当时,成立.综上可知不等式得证.【点睛】方法点睛:(1)某点的切线斜率利用该点的导函数值来求解;(2)含参函数求极小值,需要对参数进行分类讨论,讨论的依据就是导函数的两个零的大小比较,从而利用导数的正负去得到函数的单调性,即可判断极小值点来求的范围;(3)证明这种含指数函数和对数函数的不等式,要借用指数不等式和的放缩思想,利用分析法去把原不等式转化到一些简单的函数不等式来证明.考点五、利用导数解决恒成立与能成立有解问题1.(2024·湖北·模拟预测)已知函数,其中为常数.(1)过原点作图象的切线,求直线的方程;(2)若,使成立,求的最小值.【答案】(1)(2).【分析】(1)设切点,求导得出切线方程,代入原点,求出参数即得切线方程;(2)由题意,将其等价转化为在有解,即只需求在上的最小值,利用导数分析推理即得的最小值.【详解】(1)
设切点坐标为,则切线方程为,因为切线经过原点,所以,解得,
所以切线的斜率为,所以的方程为.(2),,即成立,则得在有解,故有时,.
令,,,
令得;令得,故在单调递减,单调递增,所以,
则,故的最小值为.2.(2024·广东茂名·模拟预测)已知函数.(1)求曲线在点处的切线方程;(2)当时,,求a的取值范围.【答案】(1)(2)【分析】(1)由已知易求得切点坐标,进而利用导数求得切线斜率,可求切线方程;(2),由题意可得恒成立,求导数,分,,三种情况可求的取值范围.【详解】(1)由于,则切点坐标为,因为,所以切线斜率为,故切线方程为;(2)当时,等价于,令,,恒成立,则恒成立,,当时,,函数在上单调递减,,不符合题意;当时,由,得,时,,函数单调递减,,不符合题意;当时,,因为,所以,则,所以函数在上单调递增,,符合题意.综上所述,,所以的取值范围为.3.(2024·山东济南·三模)已知函数,其中且.(1)若是偶函数,求a的值;(2)若时,,求a的取值范围.【答案】(1)(2)且.【分析】(1)由题意,,即可得解;(2)分,且和三种情况讨论,结合基本不等式和导数求解即可.【详解】(1)由题意,,即,解得,或(舍),经检验时,是偶函数,所以a的值为;(2)当时,,成立;当且时,,,又已证,故此时符合题意;当时,,因为函数都是增函数,所以函数在上单调递增,且,故存在,使得当时,,从而单调递减,所以,存在,使得,此时不合题意.综上所述,且.4.(23-24高三上·广东深圳·阶段练习)已知.(1)讨论的单调性和极值;(2)若时,有解,求的取值范围.【答案】(1)见解析(2)【分析】(1)首先求函数的导数,,讨论和两种情况讨论函数的单调性和极值;(2)首先不等式参变分离为,在时有解,再构造函数,,转化为利用导数求函数的最大值.【详解】(1),当时,恒成立,函数在区间上单调递减,无极值;当时,令,得,,得,函数在区间上单调递减,,得,函数在区间上单调递增,当,函数取得极小值,综上可知,时,函数的单调递减区间是,无增区间,无极值;时,函数的单调递增区间是,单调递减区间,极小值,无极大值.(2)由题意可知,,时有解,则,在时有解,即,设,,,令,得,当时,,单调递增,当时,,单调递减,所以的最大值为,即,所以实数的取值范围是.5.(2024·全国·模拟预测)已知函数.(1)讨论的单调性;(2)若不等式在区间上有解,求实数a的取值范围.【答案】(1)答案见解析;(2).【分析】(1)求出,分类讨论确定和的解得单调性;(2)用分离参数法转化问题为不等式在区间上有解,引入函数,求出的最小值即可得.【详解】(1)由题意知函数的定义域为,而,当时,恒成立,函数在上单调递增;当时,由,得,由,得,所以在上单调递减,在上单调递增.综上,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)因为不等式在区间上有解,所以在区间上有解,此时,即在区间上有解,令,则.令,则,所以函数在上单调递增,所以.当时;当时,所以在上单调递减,在上单调递增,所以,所以,综上可知,实数a的取值范围是.6.(2024·四川雅安·三模)已知函数.(1)当时,求函数在上的值域;(2)若关于的不等式在上恒成立,求实数的取值范围.【答案】(1)(2).【分析】(1)求导,根据可得,即可根据单调性求解最值,(2)对求导,根据的分类即可根据函数的单调性求解最值求解,或者根据得.利用放缩法可得,进而可求解,根据可得矛盾求解.【详解】(1)当时,,,,在上单调递增,,的值域为(2)法一:令,①当时,在上恒成立.②当时,,在上单调递增,成立.③当时,,,在上单调递增,即在上单调递增,,存在使得当时,故在上单调递减,则,不合题意.④当时,令,则,在上单调递增,即在上单调递增,,即在上单调递增,成立.综上,的取值范围是.法二:令,,令得.①当时,,令,,单调递增,故在上单调递增,恒成立.②当时,,,使,这与恒成立矛盾.综上,.【点睛】方法点睛:1.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.3.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.7.(2024·浙江绍兴·二模)已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,,求实数的取值范围.【答案】(1);(2).【分析】(1)根据导数的几何意义求出切线的斜率,进而求出切线方程;(2)分和讨论,利用导数结合不等式放缩判断导数正负,结合单调性验证恒成立是否满足.【详解】(1)当时,,则,所以切线斜率为,又,所以,切线方程是.(2)①当时,因为,所以,所以.记,则,令,则.因为当时,,所以在区间上单调递增,所以,,所以,在区间上单调递增,所以,,所以.②当时,,因为当时,,令,则,若,则,即在区间上单调递增.若,则,所以在区间上单调递增.所以当时,在区间上单调递增.因为,,所以,存在,使得,所以,当时,,即在区间上单调递减,所以,不满足题意.综上可知,实数的取值范围为.8.(2024·浙江温州·模拟预测)函数(1)求的单调区间.(2)若在时恒成立,求的取值范围.【答案】(1)的单调递增区间是单调递减区间是
(2)【分析】(1)对函数求导有,根据导数判断函数的单调性区间即可;(2)构造函数,将问题转化为:在时恒成立,求的取值范围;根据,求出命题成立的必要条件,再验证充分性即可确定的取值范围.【详解】(1)因为,所以,定义域为,令,即,即,解得,所以当时,,单调递增;当时,,单调递减;综上所述,的单调递增区间是,单调递减区间是
.(2)记,则,所以,根据题意原题可化为:在时恒成立,求的取值范围;因为,所以在时恒成立的必要条件为,即,即;构造函数,则,所以在上单调递增,所以,所以有,即在上恒成立,令,当时,有,所以在上恒成立,因为,不等式两边同时乘以,有在上恒成立,即在上恒成立,即时,在上恒成立,综上,是在时恒成立的充要条件,所以的取值范围为.【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.9.(2024·山东·二模)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.【答案】(1)答案见解析(2)【分析】(1)先求导函数,再对m进行分类讨论得的正负情况,进而得函数单调性.(2)先由题意得出隐性条件得m的限制范围,再对不等式两边同时取以为底的对数整理得左右两边为同样形式的不等式进而将原问题等价简化成研究恒成立即可求解.【详解】(1)由题可知,,且在定义域上单调递增,当时,恒成立,此时在上单调递减,当时,令,则,所以时,,此时单调递减;时,,此时单调递增,当,即时,此时在恒成立,单调递增,综上,当时,在上单调递减;当时,在上单调递减,在上单调递增;当时,在上单调递增.(2)因为,所以,又,所以,即,故时,恒成立,令,,则,当时,,为增函数,当时,,为减函数,所以,从而.将两边同时取以为底的对数可得整理可得.令,则,且在上单调递增,因为且,所以在上恒成立,所以恒成立,令,则,当时,单调递增,当时,单调递减,所以,所以,又因为,所以.【点睛】方法点睛:对于指、对、幂函数同时出现的复杂不等式问题,如本题,一般考虑用同构思想方法将不等式两边转化成形式一样的式子,再构造函数利用函数单调性来研究.10.(2024·河北·二模)已知函数.(1)求曲线在处的切线与坐标轴围成的三角形的周长;(2)若函数的图象上任意一点关于直线的对称点都在函数的图象上,且存在,使成立,求实数的取值范围.【答案】(1)(2)【分析】(1)根据导数的几何意义求切线方程,进而求得与轴的交点与轴的交点,计算可得结果;(2)根据对称性求函数的解析式,将问题转化为存在,使成立,构造函数,转化为函数的最值问题并求解.【详解】(1)由,得,所以切线的斜率.所以切线的方程为,即.令,得,令,得,所以切线与轴交于点,与轴交于点,所以切线与坐标轴围成的三角形的周长为.(2)设,则,由题意知在的图象上,所以,所以.由,得,即,因为存在,使成立,所以存在,使成立,设,则,又,当且仅当时等号成立,所以单调递增,所以当时,,可得,即实数的取值范围是考点六、利用导数研究函数的零点与方程的根1.(2024·陕西安康·模拟预测)已知函数.(1)证明:当时,;(2)求在区间上的零点个数.【答案】(1)证明见解析(2)2个【分析】(1)由题意结合要证明的不等式,构造函数,利用导数判断其单调性,证明,即可证明结论;(2)讨论和两种情况,当时,结合题意构造函数,判断函数的单调性,结合零点存在定理判断函数的零点个数,综合即可求得答案.【详解】(1)设,则.设,则,因为在上单调递增,所以,又因为当时,,所以,所以在上单调递增,所以,所以在上单调递增,所以,所以当时,.(2),当时,,所以在上单调递增,因为,所以由零点存在定理知在上有且仅有一个零点.当时,令,则,当时,有,所以在上单调递减,又因为,所以存在使得,当时,,所以在上单调递增,所以当时,故在上无零点,当时,,所以在上单调递减,又,所以在上有且仅有一个零点.综上所述:在上有且只有2个零点.【点睛】难点点睛:本题综合考查了导数的应用问题,涉及利用导数求函数最值、证明不等式以及函数的零点问题,解答的难点在于函数零点的判断,解答时要能结合题设,恰当地构造函数,判断函数单调性,进而判断函数零点.2.(2024·广东汕头·三模)已知函数.(1)若曲线在处的切线与轴垂直,求的极值.(2)若在只有一个零点,求.【答案】(1)极小值,无极大值;(2).【分析】(1)求出函数的导数,结合几何意义求出,再分析单调性求出极值.(2)由函数零点的意义,等价变形得在只有一解,转化为直线与函数图象只有一个交点求解.【详解】(1)函数的定义域为R,求导得,,依题意,,则,,当时,,当时,,因此函数在上单调递减,在上单调递增,所以函数在处取得极小值,无极大值.(2)函数在只有一个零点,等价于在只有一个零点,设,则函数在只有一个零点,当且仅当在只有一解,即在只有一解,于是曲线与直线只有一个公共点,令,求导得,当时,,当时,,因此函数在上单调递减,在上单调递增,函数在取得极小值同时也是最小值,当时,;当时,,画山大致的图象,如图,在只有一个零点时,,所以在只有一个零点吋,.3.(2024·安徽芜湖·模拟预测)已知函数.(1)当时,求函数在处的切线方程;(2)若函数至多一个零点,求a的取值范围.【答案】(1)(2)【分析】(1)利用导数思想来求某一点处的切线方程;(2)由零点方程进行分离参变量,构造新的函数进行单调性分析求最值,再结合零点情况判断参变量的取值范围.【详解】(1)由得:,当时,,,所以函数在处的切线方程为:,即,所以(2)由函数的定义域为,又由,分离参变量得:
令
令在单调递增,又,在上,在上,在单调递减,在单调递增,所以,
又时时4.(2024·青海海西·模拟预测)已知函数.(1)讨论函数的单调性;(2)若函数有且仅有两个零点,求实数的取值范围.【答案】(1)答案见解析(2).【分析】(1)根据题意,求导可得,然后分与讨论,即可得到结果;(2)根据题意,结合(1)中结论可知,代入计算,即可求解.【详解】(1)函数的定义域为,由,①当时,,可得函数单调递增,增区间为,没有减区间;②当时,令,有,令,有,可得函数的减区间为,增区间为;综上所述,当时,函数的单调增区间为,没有减区间;当时,函数的单调增区间为,单调减区间为.(2)由(1)可知,若函数有且仅有两个零点,必有,可得,当时,;当时,,故若函数有且仅有两个零点,则实数的取值范围为.5.(23-24高三下·山东菏泽·阶段练习)已知函数,.(1)当时,求的单调区间;(2)若方程有三个不同的实根,求的取值范围.【答案】(1)单调递增区间为和,单调递减区间为(2)【分析】(1)求出函数的导函数,再解关于导函数的不等式即可求出单调区间;(2)由,可得为的一个根,所以有两个不同于的实根,令,利用导数说明函数的单调性,从而得到当时且,即可求出参数的取值范围.【详解】(1)当时,函数,则,令得或当或时,,当时,,所以在上单调递增,在上单调递增,在上单调递减,即当时,单调递增区间为和,单调递减区间为.(2),所以为的一个根,故有两个不同于的实根,令,则,①当时,,故在上单调递增,不符合题意;②当时,令,得,当时,,故在区间上单调递增,当时,,故在区间上单调递减,并且当时,;当时,;所以若要满足题意,只需且,因为,所以,又,所以,所以实数的取值范围为6.(2024·浙江温州·一模)已知().(1)求导函数的最值;(2)试讨论关于的方程()的根的个数,并说明理由.【答案】(1)最大值等于(2)答案见解析【分析】(1)求出导函数,令,对再求导,利用导数确定单调性得最值;(2)方程变形为,令,对求导,确定单调性,得出函数值域后可得结论.【详解】(1)∵,记∴,解得:当时,,单调递增,当时,,单调递减,所以的最大值等于.(2)方法1:由,即,即.令,∴,由解得:∴在上单调递增,在上单调递减,∴,且所以:当时,方程无解;当时,方程有1个解;当时,方程有2个解.方法2:由,即,即.令,,∴,由解得:∴在上单调递增,在上单调递减,∴,且所以:当时,方程无解;当时,方程有1个解;当时,方程有2个解.方法3:由,即,两边取对数得:,即.令,所以由,解得当时,,单调递增,当时,,单调递减所以当,即时,方程无解;当,即时,方程有1个解;当,即时,方程有2个解.7.(2024·全国·模拟预测)已知函数的图象在点处的切线方程为.(1)求的值;(2)若有两个不同的实数根,求实数的取值范围.【答案】(1)(2)【分析】(1)根据已知条件利用切点求出的斜率和函数值列两个等式求解即可.(2)把方程中的参数分离,构造新函数,将方程根的个数转化为函数图象的交点个数,通过研究构造的新函数的大致图象数形结合求解即可.【详解】(1)因为点在直线上,所以.又,所以.,,所以.综上.(2)由(1)得,易知,所以有两个不同的实数根可转化为:关于的方程有两个不同的实数根.设,,令得,或.所以当变化时,的变化情况为000单调递增极大值单调递减单调递减单调递减极小值单调递增所以的极大值为,极小值为,当时,,当时,,当且时,,,当且时,,当时,.根据以上信息画出的大致图象,如图所示.所以实数的取值范围为8.(2024·山东烟台·三模)已知函数.(1)讨论函数的单调性;(2)当时,若方程有三个不等的实根,求实数的取值范围.【答案】(1)当时,在上单调递增;当时,在上单调递增,在上单调递减.(2)【分析】(1)直接使用导数的符号判断单调性;(2)将方程化为,再讨论方程的解的个数,然后得到方程的根满足的条件,即可求出实数的取值范围.【详解】(1)求导知.当时,由可知,在上单调递增;当时,对有,对有,所以在上单调递增,在上单调递减.综上,当时,在上单调递增;当时,在上单调递增,在上单调递减.(2)当时,,故原方程可化为.而,所以原方程又等价于.由于和不能同时为零,故原方程又等价于.即.设,则,从而对有,对有.故在上递增,在上递减,这就得到,且不等号两边相等当且仅当.然后考虑关于的方程:①若,由于当时有,而在上递增,故方程至多有一个解;而,,所以方程恰有一个解;②若,由于在上递增,在上递减,故方程至多有两个解;而由有,再结合,,,即知方程恰有两个解,且这两个解分别属于和;③若,则.由于,且不等号两边相等当且仅当,故方程恰有一解.④若,则,故方程无解.由刚刚讨论的的解的数量情况可知,方程存在三个不同的实根,当且仅当关于的二次方程有两个不同的根,且,.一方面,若关于的二次方程有两个不同的根,且,,则首先有,且.故,,所以.而方程的解是,两解符号相反,故只能,.所以,即.这就得到,所以,解得.故我们得到;另一方面,当时,关于的二次方程有两个不同的根,.且有,,.综上,实数的取值范围是.【点睛】关键点点睛:对于取值范围问题,使用分类讨论法是最直接的手段.9.(2024·福建泉州·模拟预测)已知函数.(1)若是函数的极值点,求的值,并求其单调区间;(2)若函数在上仅有2个零点,求的取值范围.【答案】(1);的增区间是和,减区间是;(2)【分析】(1)首先根据,求的值,根据导数和函数单调性的关系,即可求解函数的单调区间;(2)首先参变分离为,再构造函数,,并判断函数在区间的单调性,极值和端点值,根据图象的交点个数,即可求解.【详解】(1),,得,当时,,得或,的变化情况如下表所示,00增区间极大值减区间极小值增区间所以函数的增区间是和,减区间是;(2)令,,得,令,,,得,如下表,130减区间极小值3增区间因为函数在上仅有2个零点,即与有2个交点,如图:即.10.(2024·福建宁德·三模)已知函数的图象在处的切线过点.(1)求在上的最小值;(2)判断在内零点的个数,并说明理由.【答案】(1)(2)有2个零点,理由见解析【分析】(1)法一:利用在处的切线过点,可求,进而可求最小值;法二:利用导数求得切线方程为,进而可得切点,可求,进而可求最小值;(2)法一:问题等价于判断方程根的个数,令,求导判断函数的单调性,利用零点的存在性定理可得结论.法二:求导可得,令,进而求导可得上必有一个零点,使得,进而可得在上单调递增,在上单调递减,进而利用零点的存在性定理判断在上有一个零点,在上有一个零点.【详解】(1)法一:,又,所以切线方程为,又切线过点,得,所以.所以,当时,,所以在上单调递减,所以的最小值为.法二:,所以切线方程为,因此切点为,得,所以,所以,当时,,所以在上单调递减,所以的最小值为;(2)法一:判断在内零点的个数,等价于判断方程根的个数,等价于判断方程根的个数.令,令,则,得.当时,在上单调递增;当时,在上单调递减.,(或)所以时,方程有2根,所以在有2个零点.法二:由(1)得,令,则在上为减函数,所以在上必有一个零点,使得,从而当时,,当时,,所以在上单调递增,在上单调递减..又,所以在上必有一个零点,使得.当时,,即,此时单调递增;当时,,即,此时单调递减..又因为,所以在上有一个零点,在上有一个零点,综上,在有2个零点.【点睛】关键点点睛:本题第二问的关键是利用隐零点法并结合零点存在性定理判断其零点个数.考点七、利用导数研究双变量问题1.(22-23高二下·四川凉山·期末)已知函数.(1)讨论函数的单调性;(2)若恒成立,求的取值范围.【答案】(1)当时,在上单调递增;当时,在上单调递增,在上单调递减;(2)【分析】(1)含参讨论导函数的正负即可;(2)结合(1)的结论得,则有得出,构造函数判断其最值即可.【详解】(1)由,若,则恒成立,即在上单调递增,若,令得,即在上单调递增,令得,即在上单调递减,综上所述当时,在上单调递增;当时,在上单调递增,在上单调递减;(2)由(1)得当时,在上单调递增,当趋近于时,趋近于,不符合题意,故,则,所以,令,显然当时,,时,,故在时单调递减,在上单调递增,即,所以,即2.(2024高三·全国·专题练习)已知函数.(1)求函数的单调区间;(2)若函数有两个极值点,求证:.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,通过讨论的范围判断函数的单调性即可.(2)根据函数的极值的个数求出的范围,求出的解析式,根据函数的单调性证明即可.【详解】(1)由,得.令,则,①当,即时,恒成立,则,∴在上是减函数.②当,即时,,则,∴在上是减函数.③当,即或.(i)当时,是开口向上且过点的抛物线,对称轴方程为,则恒成立,从而,∴在上是减函数.(ii)当时,是开口向上且过点的抛物线,对称轴方程为,则函数有两个零点:(显然),当时,,单调递减;当时,,单调递增;当时,,f(x)单调递减.综上,当时,的减区间是;当时,的增区间是,减区间是.(2)由(1)知,当时,有两个极值点,则是方程的两个根,从而.由韦达定理,得.又,∴..令,则.当时,;当时,,则在上是增函数,在上是减函数,从而,于是.【点睛】利用导数求解函数(含参)的单调区间,关键要对参数进行分类讨论,本题中分子为二次函数,所以构造二次函数,利用判别式可分为来讨论的根和正负情况,从而确定的正负.3.(2024·四川德阳·二模)已知函数,(1)当时,讨论的单调性;(2)若函数有两个极值点,求的最小值.【答案】(1)答案见解析(2)【分析】(1)利用导数与函数单调性的关系,分类讨论与两种情况即可得解;(2)利用(1)中结论,利用韦达定理得到,,,利用消元法将表示成关于的函数,再利用换元法和导数求得所得函数的最小值,从而得解.【详解】(1)因为,所以,令,则,因为,当时,,则,即,此时在上单调递增,当时,,由,得,且,当或时,,即;当时,,即,所以在,上单调递增,在上单调递减;综上,当时,在上单调递增,当时,在,上单调递增,在上单调递减,其中.(2)由(1)可知,为的两个极值点,且,所以,且是方程的两不等正根,此时,,,所以,,且有,,则令,则,令,则,当时,,则单调递减,当时,,则单调递增,所以,所以的最小值为.【点睛】关键点点睛:本题解决的关键是,利用韦达定理将双变量的转化为关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《确定品牌定位》课件
- 天津大学管理经济学复习要点四大才子之一版
- 大学体育与健康 教案 武术散打5
- 大学体育与健康 教案 网球11
- 上海师范大学天华学院-教务处
- 湖北汽车工业学院《智能仪表与过程控制》2021-2022学年第一学期期末试卷
- 智慧园区设计方案
- 胆道疾病的营养治疗
- 《E基础知识培训》课件
- 元宵节主题模板38
- 08SS704 混凝土模块式化粪池
- DL∕T 1845-2018 电力设备高合金钢里氏硬度试验方法
- 2024年全国各地中考语文真题分类汇编【第二辑】专题07 文言文对比阅读(含答案)
- 医院消除三病母婴传播工作总结汇报
- 质量环境职业健康安全管理体系三合一整合全套体系文件(管理手册+程序文件)
- 部编版九年级上册语文期末复习资料
- 电缆敷设施工方案
- 氧气吸入操作评分标准(中心供氧)
- CJJ95-2013 城镇燃气埋地钢质管道腐蚀控制技术规程
- 3 吉祥图案(教学设计)人美版(北京) (2012)美术六年级下册
- 房屋建筑加固改造工程施工重点及难点分析与对策
评论
0/150
提交评论