2020-2024年五年高考物理真题分类汇编 专题07 带电粒子在场中运动的综合问题(原卷版)_第1页
2020-2024年五年高考物理真题分类汇编 专题07 带电粒子在场中运动的综合问题(原卷版)_第2页
2020-2024年五年高考物理真题分类汇编 专题07 带电粒子在场中运动的综合问题(原卷版)_第3页
2020-2024年五年高考物理真题分类汇编 专题07 带电粒子在场中运动的综合问题(原卷版)_第4页
2020-2024年五年高考物理真题分类汇编 专题07 带电粒子在场中运动的综合问题(原卷版)_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2024年五年高考真题分类汇编PAGEPAGE1专题07带电粒子在场中运动的综合问题1.考情分析考点要求考题统计带电粒子在场中运动的综合问题2024•浙江•高考真题、2024•浙江•高考真题、2023•浙江•高考真题、2023•浙江•高考真题、2022•浙江•高考真题、2022•浙江•高考真题、2021•浙江•高考真题、2021•浙江•高考真题、2020•浙江•高考真题、2020•浙江•高考真题2.试题情境:质谱仪、回旋加速器、速度选择器、磁流体发电机、电磁流量计、霍尔效应及霍尔元件等3.常见问题模型:带电粒子在复合场中的运动:带电粒子在电场、磁场组合场中运动;带电粒子在电场、磁场和重力场的复合场中的运动。3.命题方向:本章内容在高考中占据了极为重要的位置,既是热点也是难点,试题涉及内容综合性较强。带电粒子在带电场中的加速和偏转,在有界匀强磁场中的运动,以及带电粒子在组合场中的运动,都是考试关注的焦点。4.备考策略:带电粒子在复合场中的运动是高考物理中的一个重要考点,有效复习这一部分内容可以从以下几个方面入手:①掌握基本概念和规律:首先,需要了解复合场的分类,包括叠加场和组合场的区别。叠加场是指电场、磁场、重力场共存,或其中某两场共存;而组合场则是指电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。②分析受力和运动特点:正确分析带电粒子在复合场中的受力情况,以及由此产生的运动特点。例如,当带电粒子所受合外力为零时,将处于静止状态或做匀速直线运动;当带电粒子所受的重力与电场力大小相等、方向相反时,在洛伦兹力的作用下做匀速圆周运动;当合外力的大小和方向均变化时,粒子做非匀变速曲线运动。③绘制运动轨迹:通过绘制粒子的运动轨迹,可以更直观地理解题目的具体要求,从而灵活选择不同的运动规律来解决问题。④运用物理定律解题:根据带电粒子的运动状态,选择合适的物理定律来解题。例如,做匀速运动时可根据平衡条件列方程求解;做匀速圆周运动时应用牛顿第二定律和平衡条件列方程联立求解;做非匀速曲线运动时应选用动能定理或动量守恒定律列方程求解。⑤注意临界问题:在解决带电粒子在复合场中的运动问题时,要注意题目中可能出现的临界条件,如“恰好”、“最大”、“最高”、“至少”等词语,这些往往是解题的关键。⑥考虑重力的影响:根据具体情况判断是否需要考虑重力对带电粒子的作用。对于微观带电粒子,如电子、质子、α粒子等,除非特殊说明,一般可以忽略重力的影响。考点01带电粒子在场中运动的综合问题1.(2024·浙江·高考真题)(多选)如图所示,一根固定的足够长的光滑绝缘细杆与水平面成角。质量为m、电荷量为+q的带电小球套在细杆上。小球始终处于磁感应强度大小为B的匀强磁场中。磁场方向垂直细杆所在的竖直面,不计空气阻力。小球以初速度沿细杆向上运动至最高点,则该过程()A.合力冲量大小为mv0cosƟ B.重力冲量大小为C.洛伦兹力冲量大小为 D.若,弹力冲量为零2.(2024·浙江·高考真题)类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”。如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ;Ⅰ区宽度为d,存在磁感应强度大小为B、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小。Ⅰ区和Ⅲ区电势处处相等,分别为和,其电势差。一束质量为m、电荷量为e的质子从O点以入射角射向Ⅰ区,在P点以出射角射出,实现“反射”;质子束从P点以入射角射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角。已知质子仅在平面内运动,单位时间发射的质子数为N,初速度为,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响。(1)若不同角度射向磁场的质子都能实现“反射”,求d的最小值;(2)若,求“折射率”n(入射角正弦与折射角正弦的比值)(3)计算说明如何调控电场,实现质子束从P点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区)(4)在P点下方距离处水平放置一长为的探测板(Q在P的正下方),长为,质子打在探测板上即被吸收中和。若还有另一相同质子束,与原质子束关于法线左右对称,同时从O点射入Ⅰ区,且,求探测板受到竖直方向力F的大小与U之间的关系。

3.(2023·浙江·高考真题)利用磁场实现离子偏转是科学仪器中广泛应用的技术。如图所示,Oxy平面(纸面)的第一象限内有足够长且宽度均为L、边界均平行x轴的区域Ⅰ和Ⅱ,其中区域Ⅰ存在磁感应强度大小为B1的匀强磁场,区域Ⅱ存在磁感应强度大小为B2的磁场,方向均垂直纸面向里,区域Ⅱ的下边界与x轴重合。位于处的离子源能释放出质量为m、电荷量为q、速度方向与x轴夹角为60°的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。(1)求离子不进入区域Ⅱ的最大速度v1及其在磁场中的运动时间t;(2)若,求能到达处的离子的最小速度v2;(3)若,且离子源射出的离子数按速度大小均匀地分布在范围,求进入第四象限的离子数与总离子数之比η。

4.(2023·浙江·高考真题)探究离子源发射速度大小和方向分布的原理如图所示。x轴上方存在垂直平面向外、磁感应强度大小为B的匀强磁场。x轴下方的分析器由两块相距为d、长度足够的平行金属薄板M和N组成,其中位于x轴的M板中心有一小孔C(孔径忽略不计),N板连接电流表后接地。位于坐标原点O的离子源能发射质量为m、电荷量为q的正离子,其速度方向与y轴夹角最大值为;且各个方向均有速度大小连续分布在和之间的离子射出。已知速度大小为、沿y轴正方向射出的离子经磁场偏转后恰好垂直x轴射入孔C。未能射入孔C的其它离子被分析器的接地外罩屏蔽(图中没有画出)。不计离子的重力及相互作用,不考虑离子间的碰撞。(1)求孔C所处位置的坐标;(2)求离子打在N板上区域的长度L;(3)若在N与M板之间加载电压,调节其大小,求电流表示数刚为0时的电压;(4)若将分析器沿着x轴平移,调节加载在N与M板之间的电压,求电流表示数刚为0时的电压与孔C位置坐标x之间关系式。

5.(2022·浙江·高考真题)离子速度分析器截面图如图所示。半径为R的空心转筒P,可绕过O点、垂直xOy平面(纸面)的中心轴逆时针匀速转动(角速度大小可调),其上有一小孔S。整个转筒内部存在方向垂直纸面向里的匀强磁场。转筒下方有一与其共轴的半圆柱面探测板Q,板Q与y轴交于A点。离子源M能沿着x轴射出质量为m、电荷量为–q(q>0)、速度大小不同的离子,其中速度大小为v0的离子进入转筒,经磁场偏转后恰好沿y轴负方向离开磁场。落在接地的筒壁或探测板上的离子被吸收且失去所带电荷,不计离子的重力和离子间的相互作用。(1)①求磁感应强度B的大小;②若速度大小为v0的离子能打在板Q的A处,求转筒P角速度ω的大小;(2)较长时间后,转筒P每转一周有N个离子打在板Q的C处,OC与x轴负方向的夹角为θ,求转筒转动一周的时间内,C处受到平均冲力F的大小;(3)若转筒P的角速度小于,且A处探测到离子,求板Q上能探测到离子的其他θ′的值(θ′为探测点位置和O点连线与x轴负方向的夹角)。

6.(2022·浙江·高考真题)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,(1)求逸出光电子的最大初动能Ekm,并求光电子从O点射入区域Ⅰ时的速度v0的大小范围;(2)若区域Ⅰ的电场强度大小,区域Ⅱ的磁感应强度大小,求被探测到的电子刚从板M逸出时速度vM的大小及与x轴的夹角;(3)为了使从O点以各种大小和方向的速度射向区域Ⅰ的电子都能被探测到,需要调节区域Ⅰ的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。

7.(2021·浙江·高考真题)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。(1)求离子从小孔S射出时相对推进器的速度大小vS;(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。

8.(2021·浙江·高考真题)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其偏转系统的底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当α很小时,有,。求:(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;(4)偏转系统同时加上电场和磁场时离子注入晶圆的位置,用坐标(x,y)表示,并说明理由。

9.(2020·浙江·高考真题)某种离子诊断测量简化装置如图所示。竖直平面内存在边界为矩形、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板平行于水平放置,能沿竖直方向缓慢移动且接地。a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界竖直向下射出,并打在探测板的右边缘D点。已知每束每秒射入磁场的离子数均为N,离子束间的距离均为,探测板的宽度为,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用。(1)求离子速度v的大小及c束中的离子射出磁场边界时与H点的距离s;(2)求探测到三束离子时探测板与边界的最大距离;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F与板到距离L的关系。

10.(2020·浙江·高考真题)通过测量质子在磁场中的运动轨迹和打到探测板上的计数率(即打到探测板上质子数与衰变产生总质子数N的比值),可研究中子()的衰变。中子衰变后转化成质子和电子,同时放出质量可视为零的反中微子。如图所示,位于P点的静止中子经衰变可形成一个质子源,该质子源在纸面内各向均匀地发射N个质子。在P点下方放置有长度以O为中点的探测板,P点离探测板的垂直距离为a。在探测板的上方存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。已知电子质量,中子质量,质子质量(c为光速,不考虑粒子之间的相互作用)。若质子的动量。(1)写出中子衰变的核反应式,求电子和反中微子的总动能(以为能量单位);(2)当,时,求计数率;(3)若取不同的值,可通过调节的大小获得与(2)问中同样的计数率,求与的关系并给出的范围。

考点01带电粒子在场中的运动1.(2024·浙江温州·三模)如图甲所示,某种离子分析器由加速区、偏转区和检测区组成,分别分布在第Ⅲ、Ⅱ、I象限内。在加速通道内分布着沿y轴负方向的匀强电场,场强大小在范围内调节;在偏转通道内分布着垂直xOy坐标平面向里的匀强磁场,磁感应强度大小随E₁的变化而变化;在检测区内,分布着匀强电场或磁场,检测区内适当位置放有长为2L的检测板。在坐标为(-L,-1.5L)的A处有一离子源,可连续释放质量为m、电荷量为的离子(释放时的速度可视为零),离子沿直线到达坐标为(-L,0)的小孔C,再经偏转区后从坐标为(0,L)的小孔D进入检测区,打在检测板上。三个区域的场互不影响,不计离子的重力及其间的相互作用。(1)要保证所有的离子都能从C孔出来后从D孔进入检测区,试推导磁感应强度大小随场强E₁变化的关系式;(2)如图乙所示,将检测板左端放在D孔上沿,板面与x轴正方向的夹角检测区内加沿y轴负方向、场强大小的匀强电场,在满足(1)的条件下,①求检测板上收集到离子记录线的长度;②调整θ角使检测板上收集到离子的记录线最长,求此记录线的长度及调整后的角度正弦值;(3)如图丙所示,检测板与y轴平行,并可沿x轴及y轴平移。检测区内加垂直xOy坐标平面向里的磁场,磁感应强度大小沿x轴均匀变化,即(k为大于零的常量),在满足(1)的条件下,要使检测板能收集到离子,求检测板x坐标的最大值。

2.(2024·浙江·模拟预测)空腔圆柱的截面圆如图所示,其圆心为O,半径为R,圆面上开有A、B、C、D四个小孔,,,,圆内存在垂直纸面向外的匀强磁场(未知),圆外OB和OC射线范围内存在垂直纸面向内的匀强磁场(未知)。紧靠A孔有两金属板M,N,两板间加上交变电压,其中已知,质量为m,电荷量为q的正电粒子持续由M板静止释放,经电场加速的粒子从A孔沿半径方向进入空腔内部,发现在时刻释放的粒子恰好能从B孔射出磁场,并能经过D孔。已知粒子在电场中加速的时间忽略不计,粒子撞击圆面即被吸收,圆面始终不带电。(1)求从B孔飞出的粒子的速度及截面圆内磁感应强度的大小;(2)求粒子从A孔运动到D孔的时间及比值;(3)紧靠D孔有两金属板,,两板间加上沿半径方向的交变电压,以板出口处点为原点建立直角坐标系,在y轴右侧区域内存在垂直纸面向内的匀强磁场,当时,从点进入磁场的速度最大的粒子恰好从点离开磁场。若要让从点进入磁场的速度最小的粒子也恰好击中点P,则的取值应为多少?

3.(2024·浙江金华·三模)某离子诊断装置的简化结构如图所示,以抛物线为边界的匀强电场存在于第二象限中,方向沿y轴负方向,电场强度。在区域内存在着垂直纸面向外的匀强磁场,磁场的右边界为平行y轴的直线。绝缘板恰好处在y轴和之间,在处平行于x轴放置,厚度不计。线型可控粒子源在垂直x轴设立,长度,可实现上一点或多点沿x轴正方向发射大量带正电的相同粒子,这些粒子质量为m、电荷量恒为q,速度大小为,重力可不计。(1)控制粒子源,只让P点发射粒子,求解不同条件下的三个问题:①取绝缘板长为4d,要使粒子进入磁场后不与绝缘板发生碰撞,求磁感应强度B需要满足的条件;②取磁场磁感应强度,从P点发出的粒子打到绝缘板上经短时碰撞后,反弹的水平分速度不变,竖直分速度大小不变、方向相反。若有一粒子与绝缘板碰撞5次后从磁场右边界上的H点(图中未标出)离开,H点到绝缘板的垂直距离为,求该粒子从进入磁场到运动到H点的时间;③撤去绝缘板,取磁场磁感应强度,若P点发出的粒子进入磁场后还受到了与速度大小成正比、方向相反的阻力,观察发现粒子的运动轨迹呈现螺旋状并与y轴相切于K点。求粒子从进入磁场到运动到K点的时间和K点的坐标。(2)撤去磁场右边界,取磁感应强度,绝缘板仍在处平行于x轴放置,但左右两端位置可以调节。让粒子源上的每一点都沿x轴正方向发射粒子,射出的粒子在y轴方向上分布均匀,要使射出的粒子都能打在绝缘板上,绝缘板的最小长度应为多少?

4.(2024·浙江·三模)利用电磁场研究带电的微观粒子是物理学家常用的方法。真空中一实验装置如图甲所示(磁场未画出),其截面图如图乙所示,区域I为足够大的水平平行金属板区域,极板间距为d,极板间电压U恒定,同时板间有垂直纸面向外的匀强磁场,磁感应强度大小为,区域II内存在垂直纸面向里的匀强磁场,磁感应强度(大小未知)。极板和光屏在磁场方向上均足够长。当频率为的入射光照射到竖直放置的金属板表面MN时,金属板表面MN逸出大量速率不同、沿各个方向运动的光电子。区域I由于速度选择器的作用,只有匀速运动的粒子能够离开区域I并进入区域II,最后全部打在水平光屏上,光屏亮光区域在截面图上的长度PQ为。已知逸出的光电子最大速率为,,元电荷为e,光电子质量为m,普朗克常量为h,忽略相对论效应,不计光电子重力和光电子之间相互作用。求:(1)该金属的逸出功W和出区域I的光电子的最小速度v;(2)区域II中磁场的磁感应强度;(3)区域II中,在如图乙截面内粒子到达区域的面积S;(4)区域II中,光电子运动位移的最大值。

5.(2024·浙江·三模)在空间中一足够长圆柱形区域内存在匀强磁场,磁场的方向沿轴线向右,磁感应强度为,在轴线上有一粒子源,可以每秒发射N个质量为m,电荷量为+q,速度为的粒子。不计重力和粒子间的相互作用力。(1)如图1所示,使粒子源沿垂直轴线的方向发射粒子,粒子恰好不会飞出磁场区域,求磁场区域的半径R;(2)如图2所示,在磁场区域半径满足(1)的前提下,在右侧磁场范围内垂直轴线放一块足够大收集板A,将大量粒子沿与轴线成向右射出,为保证所有粒子在A上均汇聚于一点,求粒子源到极板A的水平距离;(3)如图3所示,大量粒子沿与轴线成向右均匀射出,粒子源到A的距离满足(2)问,在A的中心挖一小孔,可使粒子通过。将收集板B平行放置于A右侧,并在AB极板间加上电压。粒子打在B板上即被完全吸收,求收集板B所受的作用力F与极板间电压的关系;(4)实验室中,常利用亥姆霍兹线圈产生匀强磁场,当一对亥姆霍兹线圈间的距离增大时,即可生成磁感应强度随空间缓慢变化的磁场,如图4所示,其磁感应强度两端强,中间弱。带电粒子可以在端点处“反射”而被束缚其中,即“磁约束”。粒子的运动满足如下规律:带电粒子在垂直磁场方向的速度分量与此处的磁感应强度B之间满足:,现假设该磁场中的最大磁感应强度和最小磁感应强度之比为,在该磁场的中部最弱区域有一带电粒子源,与轴线成发射粒子束,要使这些粒子能被束缚在该磁场区域,求的最小值。

6.(2024·浙江·一模)医学检查中磁共振成像简化模型如图所示,其中一个重要的部件“四极铁”,能够提供梯度磁场,从而控制电子束在运动过程中汇聚或发散,图甲为该磁场的磁感线分布情况。一束电子从M板上均匀分布的小孔飘入(初速度可以忽略不计),经过平行板MN间电场加速后获得速度v,沿垂直纸面向里的方向进入“四极铁”空腔。电子质量为m,电量为e,不计粒子重力和粒子间相互作用。(1)求加速电压大小,判断图甲中a、c和b、d两对电子,哪一对电子进入磁场后会彼此靠近;(2)以图甲中磁场中心为坐标原点O建立坐标系,垂直纸面向里为x轴正方向,沿纸面向上为y轴正方向,在xOy平面内的梯度磁场如图乙所示,该磁场区域的宽度为d。在范围内,电子束沿x轴正方向射入磁场,磁感应强度(且已知,以垂直xOy平面向里为磁场正方向)。电子速度大小均为v,穿过磁场过程中,电子的y坐标变化很小,可认为途经区域为匀强磁场。①求从处射入磁场的电子,在磁场中运动的半径及速度偏转角的正弦值;②研究发现,所有电子通过磁场后,将聚焦到x轴上处。由于d很小,可认为电子离开磁场时,速度方向的反向延长线通过点,且速度方向的偏转角很小,,求f的表达式;③在处再放置一个磁场区域宽度为d的“四极铁”(中心线位于处),使②问中的电子束通过后速度方向变成沿x轴正方向,若该“四极铁”的磁感应强度,求;④如图丙,仪器实际工作中,加速电压U会在附近小幅波动,导致电子聚焦点发生变化。若要求聚焦点坐标偏差值不超过,求电压波动幅度的最大值。

7.(2024·浙江宁波·二模)如图甲所示,立方体空间的边长为L,侧面CDHG为荧光屏,能完全吸收打在屏上的带电粒子并发光,三维坐标系坐标原点O位于底面EFGH的中心,,。已知从原点O向xOy平面内各个方向均匀持续发射速率为、质量为m、电荷量为的粒子。不计粒子重力及粒子间的相互作用。(1)若在立方体空间内仅存在方向平行于轴的匀强磁场,沿轴正方向射出的粒子恰好打在荧光屏上的H点。求磁场的磁感应强度B和粒子从原点O运动到荧光屏的最短时间t;(2)若在立方体空间内仅存在z轴负方向的匀强电场和沿y轴正方向的匀强磁场,沿x轴正方向射出的粒子,经某位置恰好与射出时速度相同,求此位置的坐标;(3)若在立方体空间内平行y轴加如图乙所示的磁场,其中。同时平行z轴加如图丙的磁场,其中,粒子在磁场中运动时间远小于磁场变化周期,不计电磁辐射影响。求沿x轴正方向射出的粒子打在荧光屏上落点的痕迹长度。

8.(2024·浙江金华·二模)电子束光刻系统的核心技术是聚焦电子束以获得更高能量。如图所示为某公司研发的多电子束聚焦系统和测试系统。每个电子枪均可以将电子通过加速电压加速后,连续发射速度方向与y轴垂直的电子束。各电子束通过聚焦区后,可以在x轴上位置聚焦成一束更高能量的电子束。其中,聚焦区由两个匀强磁场区域构成,磁感强度大小均为B,方向垂直纸面相反,磁场长度足够长,宽度均为d。已知电子质量为m、电子元电荷量为,不考虑电子间的相互作用,忽略电子的初速度。(1)若电子枪的加速电压为U,求电子在聚焦区做圆周运动的轨道半径R;(2)求从位置坐标射入的电子在聚焦区运动的总时间t;(3)若电子枪的加速电压为U,射入聚焦区时的坐标为,要使各电子枪射出的电子束均在x轴上位置聚焦,求在范围内的y与U需满足的函数关系并写出U的取值范围;(4)为进一步测试聚焦后的电子束强度,在x轴上位置的右方放置一测试区,在测试区施加一垂直纸面的匀强磁场,电子束被约束在该测试区中不会射出,电子在测试区运动速度大小为v时所受的阻力(k为常数且)。求从位置坐标y射入聚焦区的电子在测试区中运动的路程s与y的关系。

9.(2024·浙江湖州·二模)甲辰龙年,有研究者用如图装置实现“双龙戏珠”。图中M1M2和N1N2、M3M4和N3N4组成两对平行极板,将空间分隔为I、II、III三个区域,三个区域中有垂直于纸面的匀强磁场如图甲,磁感应强度均为。两发射源紧靠极板放置,每秒每个发射源分别射出104个垂直极板初速度大小的正或负电子。正负电子每次经过狭缝均被加速,极板电压UMN随时间变化由如图乙。经多次加速,正负电子恰能在荧光球表面上某点相遇,并被荧光球吸收发出荧光,实现“双龙戏珠”。已知电子比荷,电子质量;以两发射源连线中点O为坐标原点,平行极板向右方向为x轴正方向;荧光球半径,球心位置在x轴上;极板N1N2、M3M4间距。由于极板间距极小,忽略正负电子之间相互作用、过狭缝时间及正负电子穿越极板的动能损失、忽略场的边缘效应和相对论效应,计算时。(1)正负电子各由哪个发射源射出?求电压UMN的周期T;(2)求t=0时刻发射的正负电子相遇的时刻t0和荧光球球心的位置x1;(3)求正负电子每秒对荧光球的冲量I;(4)以“⌒”为一“龙节”,若同(2)在不改变“龙节”情况下,沿x轴微调荧光球的球心位置,求仍能使荧光球发光的球心位置范围。

10.(2024·浙江·一模)如图所示,水平地面上有一辆小车,上方固定有竖直光滑绝缘细管,管的长度,有一质量、电荷量的绝缘小球A放置在管的底部,小球的直径略小于细管。在管口所在水平面MN的下方存在着垂直纸面向里的匀强磁场。现让小车始终保持速度的向右匀速运动,以带电小球刚经过磁场的竖直边界为计时起点,并以此时刻管口处为坐标原点建立坐标系,轴与磁场边界重合,小球刚离开管口时竖直向上的分速度,求:(1)匀强磁场的磁感应强度大小和绝缘管对小球做的总功;(2)小球经过轴时的坐标;(3)若第一象限存在和第四象限大小和方向都相同的的匀强磁场,同时绝缘管内均匀紧密排满了大量相对绝缘管静止,与小球完全相同的绝缘小球。不考虑小球之间的相互静电力,求能到达纵坐标的小球个数与总小球个数的比值。

专题07带电粒子在场中运动的综合问题1.考情分析考点要求考题统计带电粒子在场中运动的综合问题2024•浙江•高考真题、2024•浙江•高考真题、2023•浙江•高考真题、2023•浙江•高考真题、2022•浙江•高考真题、2022•浙江•高考真题、2021•浙江•高考真题、2021•浙江•高考真题、2020•浙江•高考真题、2020•浙江•高考真题2.试题情境:质谱仪、回旋加速器、速度选择器、磁流体发电机、电磁流量计、霍尔效应及霍尔元件等3.常见问题模型:带电粒子在复合场中的运动:带电粒子在电场、磁场组合场中运动;带电粒子在电场、磁场和重力场的复合场中的运动。3.命题方向:本章内容在高考中占据了极为重要的位置,既是热点也是难点,试题涉及内容综合性较强。带电粒子在带电场中的加速和偏转,在有界匀强磁场中的运动,以及带电粒子在组合场中的运动,都是考试关注的焦点。4.备考策略:带电粒子在复合场中的运动是高考物理中的一个重要考点,有效复习这一部分内容可以从以下几个方面入手:①掌握基本概念和规律:首先,需要了解复合场的分类,包括叠加场和组合场的区别。叠加场是指电场、磁场、重力场共存,或其中某两场共存;而组合场则是指电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。②分析受力和运动特点:正确分析带电粒子在复合场中的受力情况,以及由此产生的运动特点。例如,当带电粒子所受合外力为零时,将处于静止状态或做匀速直线运动;当带电粒子所受的重力与电场力大小相等、方向相反时,在洛伦兹力的作用下做匀速圆周运动;当合外力的大小和方向均变化时,粒子做非匀变速曲线运动。③绘制运动轨迹:通过绘制粒子的运动轨迹,可以更直观地理解题目的具体要求,从而灵活选择不同的运动规律来解决问题。④运用物理定律解题:根据带电粒子的运动状态,选择合适的物理定律来解题。例如,做匀速运动时可根据平衡条件列方程求解;做匀速圆周运动时应用牛顿第二定律和平衡条件列方程联立求解;做非匀速曲线运动时应选用动能定理或动量守恒定律列方程求解。⑤注意临界问题:在解决带电粒子在复合场中的运动问题时,要注意题目中可能出现的临界条件,如“恰好”、“最大”、“最高”、“至少”等词语,这些往往是解题的关键。⑥考虑重力的影响:根据具体情况判断是否需要考虑重力对带电粒子的作用。对于微观带电粒子,如电子、质子、α粒子等,除非特殊说明,一般可以忽略重力的影响。考点01带电粒子在场中运动的综合问题1.(2024·浙江·高考真题)(多选)如图所示,一根固定的足够长的光滑绝缘细杆与水平面成角。质量为m、电荷量为+q的带电小球套在细杆上。小球始终处于磁感应强度大小为B的匀强磁场中。磁场方向垂直细杆所在的竖直面,不计空气阻力。小球以初速度沿细杆向上运动至最高点,则该过程()A.合力冲量大小为mv0cosƟ B.重力冲量大小为C.洛伦兹力冲量大小为 D.若,弹力冲量为零2.(2024·浙江·高考真题)类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”。如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ;Ⅰ区宽度为d,存在磁感应强度大小为B、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小。Ⅰ区和Ⅲ区电势处处相等,分别为和,其电势差。一束质量为m、电荷量为e的质子从O点以入射角射向Ⅰ区,在P点以出射角射出,实现“反射”;质子束从P点以入射角射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角。已知质子仅在平面内运动,单位时间发射的质子数为N,初速度为,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响。(1)若不同角度射向磁场的质子都能实现“反射”,求d的最小值;(2)若,求“折射率”n(入射角正弦与折射角正弦的比值)(3)计算说明如何调控电场,实现质子束从P点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区)(4)在P点下方距离处水平放置一长为的探测板(Q在P的正下方),长为,质子打在探测板上即被吸收中和。若还有另一相同质子束,与原质子束关于法线左右对称,同时从O点射入Ⅰ区,且,求探测板受到竖直方向力F的大小与U之间的关系。

3.(2023·浙江·高考真题)利用磁场实现离子偏转是科学仪器中广泛应用的技术。如图所示,Oxy平面(纸面)的第一象限内有足够长且宽度均为L、边界均平行x轴的区域Ⅰ和Ⅱ,其中区域Ⅰ存在磁感应强度大小为B1的匀强磁场,区域Ⅱ存在磁感应强度大小为B2的磁场,方向均垂直纸面向里,区域Ⅱ的下边界与x轴重合。位于处的离子源能释放出质量为m、电荷量为q、速度方向与x轴夹角为60°的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。(1)求离子不进入区域Ⅱ的最大速度v1及其在磁场中的运动时间t;(2)若,求能到达处的离子的最小速度v2;(3)若,且离子源射出的离子数按速度大小均匀地分布在范围,求进入第四象限的离子数与总离子数之比η。

4.(2023·浙江·高考真题)探究离子源发射速度大小和方向分布的原理如图所示。x轴上方存在垂直平面向外、磁感应强度大小为B的匀强磁场。x轴下方的分析器由两块相距为d、长度足够的平行金属薄板M和N组成,其中位于x轴的M板中心有一小孔C(孔径忽略不计),N板连接电流表后接地。位于坐标原点O的离子源能发射质量为m、电荷量为q的正离子,其速度方向与y轴夹角最大值为;且各个方向均有速度大小连续分布在和之间的离子射出。已知速度大小为、沿y轴正方向射出的离子经磁场偏转后恰好垂直x轴射入孔C。未能射入孔C的其它离子被分析器的接地外罩屏蔽(图中没有画出)。不计离子的重力及相互作用,不考虑离子间的碰撞。(1)求孔C所处位置的坐标;(2)求离子打在N板上区域的长度L;(3)若在N与M板之间加载电压,调节其大小,求电流表示数刚为0时的电压;(4)若将分析器沿着x轴平移,调节加载在N与M板之间的电压,求电流表示数刚为0时的电压与孔C位置坐标x之间关系式。

5.(2022·浙江·高考真题)离子速度分析器截面图如图所示。半径为R的空心转筒P,可绕过O点、垂直xOy平面(纸面)的中心轴逆时针匀速转动(角速度大小可调),其上有一小孔S。整个转筒内部存在方向垂直纸面向里的匀强磁场。转筒下方有一与其共轴的半圆柱面探测板Q,板Q与y轴交于A点。离子源M能沿着x轴射出质量为m、电荷量为–q(q>0)、速度大小不同的离子,其中速度大小为v0的离子进入转筒,经磁场偏转后恰好沿y轴负方向离开磁场。落在接地的筒壁或探测板上的离子被吸收且失去所带电荷,不计离子的重力和离子间的相互作用。(1)①求磁感应强度B的大小;②若速度大小为v0的离子能打在板Q的A处,求转筒P角速度ω的大小;(2)较长时间后,转筒P每转一周有N个离子打在板Q的C处,OC与x轴负方向的夹角为θ,求转筒转动一周的时间内,C处受到平均冲力F的大小;(3)若转筒P的角速度小于,且A处探测到离子,求板Q上能探测到离子的其他θ′的值(θ′为探测点位置和O点连线与x轴负方向的夹角)。

6.(2022·浙江·高考真题)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,(1)求逸出光电子的最大初动能Ekm,并求光电子从O点射入区域Ⅰ时的速度v0的大小范围;(2)若区域Ⅰ的电场强度大小,区域Ⅱ的磁感应强度大小,求被探测到的电子刚从板M逸出时速度vM的大小及与x轴的夹角;(3)为了使从O点以各种大小和方向的速度射向区域Ⅰ的电子都能被探测到,需要调节区域Ⅰ的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。

7.(2021·浙江·高考真题)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。(1)求离子从小孔S射出时相对推进器的速度大小vS;(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。

8.(2021·浙江·高考真题)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其偏转系统的底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当α很小时,有,。求:(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;(4)偏转系统同时加上电场和磁场时离子注入晶圆的位置,用坐标(x,y)表示,并说明理由。

9.(2020·浙江·高考真题)某种离子诊断测量简化装置如图所示。竖直平面内存在边界为矩形、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板平行于水平放置,能沿竖直方向缓慢移动且接地。a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界竖直向下射出,并打在探测板的右边缘D点。已知每束每秒射入磁场的离子数均为N,离子束间的距离均为,探测板的宽度为,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用。(1)求离子速度v的大小及c束中的离子射出磁场边界时与H点的距离s;(2)求探测到三束离子时探测板与边界的最大距离;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F与板到距离L的关系。

10.(2020·浙江·高考真题)通过测量质子在磁场中的运动轨迹和打到探测板上的计数率(即打到探测板上质子数与衰变产生总质子数N的比值),可研究中子()的衰变。中子衰变后转化成质子和电子,同时放出质量可视为零的反中微子。如图所示,位于P点的静止中子经衰变可形成一个质子源,该质子源在纸面内各向均匀地发射N个质子。在P点下方放置有长度以O为中点的探测板,P点离探测板的垂直距离为a。在探测板的上方存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。已知电子质量,中子质量,质子质量(c为光速,不考虑粒子之间的相互作用)。若质子的动量。(1)写出中子衰变的核反应式,求电子和反中微子的总动能(以为能量单位);(2)当,时,求计数率;(3)若取不同的值,可通过调节的大小获得与(2)问中同样的计数率,求与的关系并给出的范围。

考点01带电粒子在场中的运动1.(2024·浙江温州·三模)如图甲所示,某种离子分析器由加速区、偏转区和检测区组成,分别分布在第Ⅲ、Ⅱ、I象限内。在加速通道内分布着沿y轴负方向的匀强电场,场强大小在范围内调节;在偏转通道内分布着垂直xOy坐标平面向里的匀强磁场,磁感应强度大小随E₁的变化而变化;在检测区内,分布着匀强电场或磁场,检测区内适当位置放有长为2L的检测板。在坐标为(-L,-1.5L)的A处有一离子源,可连续释放质量为m、电荷量为的离子(释放时的速度可视为零),离子沿直线到达坐标为(-L,0)的小孔C,再经偏转区后从坐标为(0,L)的小孔D进入检测区,打在检测板上。三个区域的场互不影响,不计离子的重力及其间的相互作用。(1)要保证所有的离子都能从C孔出来后从D孔进入检测区,试推导磁感应强度大小随场强E₁变化的关系式;(2)如图乙所示,将检测板左端放在D孔上沿,板面与x轴正方向的夹角检测区内加沿y轴负方向、场强大小的匀强电场,在满足(1)的条件下,①求检测板上收集到离子记录线的长度;②调整θ角使检测板上收集到离子的记录线最长,求此记录线的长度及调整后的角度正弦值;(3)如图丙所示,检测板与y轴平行,并可沿x轴及y轴平移。检测区内加垂直xOy坐标平面向里的磁场,磁感应强度大小沿x轴均匀变化,即(k为大于零的常量),在满足(1)的条件下,要使检测板能收集到离子,求检测板x坐标的最大值。

2.(2024·浙江·模拟预测)空腔圆柱的截面圆如图所示,其圆心为O,半径为R,圆面上开有A、B、C、D四个小孔,,,,圆内存在垂直纸面向外的匀强磁场(未知),圆外OB和OC射线范围内存在垂直纸面向内的匀强磁场(未知)。紧靠A孔有两金属板M,N,两板间加上交变电压,其中已知,质量为m,电荷量为q的正电粒子持续由M板静止释放,经电场加速的粒子从A孔沿半径方向进入空腔内部,发现在时刻释放的粒子恰好能从B孔射出磁场,并能经过D孔。已知粒子在电场中加速的时间忽略不计,粒子撞击圆面即被吸收,圆面始终不带电。(1)求从B孔飞出的粒子的速度及截面圆内磁感应强度的大小;(2)求粒子从A孔运动到D孔的时间及比值;(3)紧靠D孔有两金属板,,两板间加上沿半径方向的交变电压,以板出口处点为原点建立直角坐标系,在y轴右侧区域内存在垂直纸面向内的匀强磁场,当时,从点进入磁场的速度最大的粒子恰好从点离开磁场。若要让从点进入磁场的速度最小的粒子也恰好击中点P,则的取值应为多少?

3.(2024·浙江金华·三模)某离子诊断装置的简化结构如图所示,以抛物线为边界的匀强电场存在于第二象限中,方向沿y轴负方向,电场强度。在区域内存在着垂直纸面向外的匀强磁场,磁场的右边界为平行y轴的直线。绝缘板恰好处在y轴和之间,在处平行于x轴放置,厚度不计。线型可控粒子源在垂直x轴设立,长度,可实现上一点或多点沿x轴正方向发射大量带正电的相同粒子,这些粒子质量为m、电荷量恒为q,速度大小为,重力可不计。(1)控制粒子源,只让P点发射粒子,求解不同条件下的三个问题:①取绝缘板长为4d,要使粒子进入磁场后不与绝缘板发生碰撞,求磁感应强度B需要满足的条件;②取磁场磁感应强度,从P点发出的粒子打到绝缘板上经短时碰撞后,反弹的水平分速度不变,竖直分速度大小不变、方向相反。若有一粒子与绝缘板碰撞5次后从磁场右边界上的H点(图中未标出)离开,H点到绝缘板的垂直距离为,求该粒子从进入磁场到运动到H点的时间;③撤去绝缘板,取磁场磁感应强度,若P点发出的粒子进入磁场后还受到了与速度大小成正比、方向相反的阻力,观察发现粒子的运动轨迹呈现螺旋状并与y轴相切于K点。求粒子从进入磁场到运动到K点的时间和K点的坐标。(2)撤去磁场右边界,取磁感应强度,绝缘板仍在处平行于x轴放置,但左右两端位置可以调节。让粒子源上的每一点都沿x轴正方向发射粒子,射出的粒子在y轴方向上分布均匀,要使射出的粒子都能打在绝缘板上,绝缘板的最小长度应为多少?

4.(2024·浙江·三模)利用电磁场研究带电的微观粒子是物理学家常用的方法。真空中一实验装置如图甲所示(磁场未画出),其截面图如图乙所示,区域I为足够大的水平平行金属板区域,极板间距为d,极板间电压U恒定,同时板间有垂直纸面向外的匀强磁场,磁感应强度大小为,区域II内存在垂直纸面向里的匀强磁场,磁感应强度(大小未知)。极板和光屏在磁场方向上均足够长。当频率为的入射光照射到竖直放置的金属板表面MN时,金属板表面MN逸出大量速率不同、沿各个方向运动的光电子。区域I由于速度选择器的作用,只有匀速运动的粒子能够离开区域I并进入区域II,最后全部打在水平光屏上,光屏亮光区域在截面图上的长度PQ为。已知逸出的光电子最大速率为,,元电荷为e,光电子质量为m,普朗克常量为h,忽略相对论效应,不计光电子重力和光电子之间相互作用。求:(1)该金属的逸出功W和出区域I的光电子的最小速度v;(2)区域II中磁场的磁感应强度;(3)区域II中,在如图乙截面内粒子到达区域的面积S;(4)区域II中,光电子运动位移的最大值。

5.(2024·浙江·三模)在空间中一足够长圆柱形区域内存在匀强磁场,磁场的方向沿轴线向右,磁感应强度为,在轴线上有一粒子源,可以每秒发射N个质量为m,电荷量为+q,速度为的粒子。不计重力和粒子间的相互作用力。(1)如图1所示,使粒子源沿垂直轴线的方向发射粒子,粒子恰好不会飞出磁场区域,求磁场区域的半径R;(2)如图2所示,在磁场区域半径满足(1)的前提下,在右侧磁场范围内垂直轴线放一块足够大收集板A,将大量粒子沿与轴线成向右射出,为保证所有粒子在A上均汇聚于一点,求粒子源到极板A的水平距离;(3)如图3所示,大量粒子沿与轴线成向右均匀射出,粒子源到A的距离满足(2)问,在A的中心挖一小孔,可使粒子通过。将收集板B平行放置于A右侧,并在AB极板间加上电压。粒子打在B板上即被完全吸收,求收集板B所受的作用力F与极板间电压的关系;(4)实验室中,常利用亥姆霍兹线圈产生匀强磁场,当一对亥姆霍兹线圈间的距离增大时,即可生成磁感应强度随空间缓慢变化的磁场,如图4所示,其磁感应强度两端强,中间弱。带电粒子可以在端点处“反射”而被束缚其中,即“磁约束”。粒子的运动满足如下规律:带电粒子在垂直磁场方向的速度分量与此处的磁感应强度B之间满足:,现假设该磁场中的最大磁感应强度和最小磁感应强度之比为,在该磁场的中部最弱区域有一带电粒子源,与轴线成发射粒子束,要使这些粒子能被束缚在该磁场区域,求的最小值。

6.(2024·浙江·一模)医学检查中磁共振成像简化模型如图所示,其中一个重要的部件“四极铁”,能够提供梯度磁场,从而控制电子束在运动过程中汇聚或发散,图甲为该磁场的磁感线分布情况。一束电子从M板上均匀分布的小孔飘入(初速度可以忽略不计),经过平行板MN间电场加速后获得速度v,沿垂直纸面向里的方向进入“四极铁”空腔。电子质量为m,电量为e,不计粒子重力和粒子间相互作用。(1)求加速电压大小,判断图甲中a、c和b、d两对电子,哪一对电子进入磁场后会彼此靠近;(2)以图甲中磁场中心为坐标原点O建立坐标系,垂直纸面向里为x轴正方向,沿纸面向上为y轴正方向,在xOy平面内的梯度磁场如图乙所示,该磁场区域的宽度为d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论