版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西部分重点中学高三二诊模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.2.执行如图所示的程序框图,则输出的值为()A. B. C. D.3.已知实数,满足,则的最大值等于()A.2 B. C.4 D.84.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.5.两圆和相外切,且,则的最大值为()A. B.9 C. D.16.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过7.设集合,,若,则()A. B. C. D.8.命题“”的否定为()A. B.C. D.9.已知变量,满足不等式组,则的最小值为()A. B. C. D.10.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.11.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.12.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,为虚数单位,且,则=_____.14.已知集合,,则________.15.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.16.已知,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.19.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.20.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.21.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.22.(10分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.2、B【解析】
列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.3、D【解析】
画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.4、D【解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.5、A【解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.6、D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.7、A【解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.8、C【解析】
套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.9、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.10、B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.11、D【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.12、A【解析】
由题意,可得,,消去得,可得,继而得到,代入即得解【详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
解:利用复数相等,可知由有.14、【解析】
利用交集定义直接求解.【详解】解:集合奇数,偶数,.故答案为:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.15、2【解析】
利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.16、1【解析】
由题意先求得的值,可得,再令,可得结论.【详解】已知,,,,令,可得,故答案为:1.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)先求出角,进而可得出,则①②中有且只有一个正确,③正确,然后分①③正确和②③正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,,,为钝角,与矛盾,故①②中仅有一个正确,③正确.显然,得.当①③正确时,由,得(无解);当②③正确时,由于,,得;(2)如图,因为,,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.18、(1)证明见解析.(2)【解析】
(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC⊂平面ACB1,CB1⊂平面ACB1,∴MN⊥平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以•MP,因为CM,B1C;B1M,所以所以:CM•B1M.因为,所以,解得所以点,到平面的距离为【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题19、(1)见解析(2)【解析】
(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,,,此时,在上单调递增;当即时,时,,在上单调递减;时,,在上单调递增;当即时,,,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.20、(1);.;(2)【解析】
(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.21、(1),(2)【解析】
(1)先由正弦定理,得到,进而可得,再由,即可得出结果;(2)先由余弦定理得,,再根据题中数据,可得,从而可求出,得到,进而可求出结果.【详解】(1)由正弦定理得,所以,因为,所以,即,所以,又因为,所以,.(2)在和中,由余弦定理得,.因为,,,,又因为,即,所以,所以,又因为,所以.所以的面积.【点睛】本题主要考查解三角形,灵活运用正弦定理和余弦定理即可,属于常考题型.22、(1);(2)详见解析.【解析】试题分析:(1)利用题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商家入驻平台合同范本
- 河北农业大学现代科技学院《生物信息学》2023-2024学年第一学期期末试卷
- 潘彭与茅艳二零二四年度离嚸婚姻关系解除协议
- 2024年二手房买卖定金合同及购房协议3篇
- 2024年度新能源汽车供应链管理合同3篇
- 二零二四年度二手房自行车库买卖合同2篇
- 会议场地租赁合同范本
- 2024年度虚拟现实购物体验服务合同2篇
- 2024版建筑装饰工程设计合同2篇
- 苗木种植基地土地租赁合同2024年度
- 2024年代理要账居间协议合同范本
- 2024安全生产法律法规知识培训
- 江苏开放大学2024秋《建筑测量》作业3参考答案
- 2024污水处理厂运营合同书(范本)
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 《机械设计基础》期末考试试卷六
- 2024年炉外精炼工(初级)职业技能鉴定考试题库(含答案)
- 运动会作文指导PPT课件.ppt
- 律师事务所申请注销登记表(样表)
- 门店选址评估表
评论
0/150
提交评论