版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点08解直角三角形及其应用中考数学中《锐角三角函数及其应用》部分主要考向分为三类:一、特殊角的三角函数值相关运算(每年1道,6~8分)二、解直角三角形(每年1道,3分)三、解直角三角形的应用(每年1题,3~8分)中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。其中,特殊角的三角函数值主要和实数相关概念放一起考察计算题,而解直角三角形及其各种应用则选择、填空、简答题都有出现,其中应用则偏向大题多些,难度一般中等或偏上,分值也比较可观,但对应考点掌握熟练,计算和审题上够小心了,一般不会失分。考向一:特殊角的三角函数值的运算【题型1和实数概念结合的特殊角的三角函数值的运算】满分技巧特殊角的三角函数值表αsinαcosαtanα30°45°60°特殊角的三角函数值,可以直接记数值,也可以记定义,然后现退对应函数值,但显然,直接熟记对应数值会便捷很多。1.(2023•天津)的值等于()A.1 B. C. D.22.(2023•黄石)计算:(﹣)﹣2+(1﹣)0﹣2cos60°=.3.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230=.4.(2023•内江)在△ABC中,∠A、∠B,∠C的对边分别为a、b、c,且满足a2+|c﹣10|+=12a﹣36,则sinB的值为.5.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.6.(2023•西藏)计算:.考向二:解直角三角形【题型2利用已知信息求解对应角的三角函数值】满分技巧解直角三角形口诀“直乘斜除,对正临余”——求直角三角形的直角边,多用乘法;求斜边,多用除法。求已知角的对边,多用正弦或正切值;求已知角的临边,多用余弦值。常见辅助线:做垂线1.(2023•攀枝花)△ABC中,∠A、∠B、∠C的对边分别为a、b、c.已知a=6,b=8,c=10,则cos∠A的值为()A. B. C. D.2.(2023•陕西)如图,在6×7的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sinB的值为()A. B. C. D.3.(2023•常州)如图,在Rt△ABC中,∠A=90°,点D在边AB上,连接CD.若BD=CD,=,则tanB=.【题型3利用三角函数值求解几何图形的线段】满分技巧此类计算更多的是注意审题,因为题目中可能会要求精确位数,或者保留几位有效数字,这时候要注意,一般计算到最后一步才带入参考数据计算,然后四舍五入。1.(2023•西宁)在Rt△ABC中,∠ACB=90°,AB=12,∠A=42°,则BC的长约为.(结果精确到0.1.参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)2.(2023•武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是2.7cm(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).3.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为;点D的坐标为.考向二:解直角三角形的应用【题型4坡度坡角问题】满分技巧坡度坡角的意义:坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡角:坡面与水平面的夹角叫做坡角,记作α,坡度越大,坡角越大,坡面越陡1.(2023•深圳)爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025﹣cosα)J,若某人爬了1000m,该坡角为30°,则他耗能()(参考数据:≈1.732,≈1.414)A.58J B.159J C.1025J D.1732J2.(2023•长春)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米 B.32cos25°米 C.米 D.米3.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备厢,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备厢后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【题型5仰角俯角问题】满分技巧仰角俯角的意义:仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角1.(2023•衢州)如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,AB=b,AB的最大仰角为α.当∠C=45°时,则点A到桌面的最大高度是()A. B. C.a+bcosα D.a+bsinα2.(2023•日照)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,则灯塔的高度AD大约是()(结果精确到1m,参考数据:≈1.41,≈1.73)A.31m B.36m C.42m D.53m3.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【题型6方向角问题】满分技巧方向角遵循——上北下南,左西右东。因为这类题目常和特殊角结合,故作辅助线时,谨记一个原则:不能破坏已有的特殊角。1.(2023•眉山)一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是海里.2.(2023•丹东)一艘轮船由西向东航行,行驶到A岛时,测得灯塔B在它北偏东31°方向上,继续向东航行10nmile到达C港,此时测得灯塔B在它北偏西61°方向上,求轮船在航行过程中与灯塔B的最短距离.(结果精确到0.1nmile)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin61°≈0.87,cos61°≈0.48,tan61°≈1.80).3.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)(建议用时:30分钟)1.(2023•无锡)cos60°的值为()A. B. C. D.2.(2023•南充)如图,小兵同学从A处出发向正东方向走x米到达B处,再向正北方向走到C处,已知∠BAC=α,则A,C两处相距()A.米 B.米 C.x•sinα米 D.x•cosα米3.(2023•十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为()(参考数据:≈1.414,≈1.732)A.1.59米 B.2.07米 C.3.55米 D.3.66米4.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5 B.4 C.3 D.25.(2023•淄博)勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG,DG.若正方形ABCD与EFGH的边长之比为:1,则sin∠DGE等于()A. B. C. D.6.(2023•南通)如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为()A. B. C. D.7.(2023•益阳)如图,在平面直角坐标系xOy中,有三点A(0,1),B(4,1),C(5,6),则sin∠BAC=()A. B. C. D.8.(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA=30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A. B. C. D.9.(2023•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.10.(2023•广西)如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m高的支柱,则共需钢材约m(结果取整数).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)11.(2023•湖北)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45°,尚美楼顶部F的俯角为30°,已知博雅楼高度CE为15米,则尚美楼高度DF为米.(结果保留根号)12.(2023•赤峰)为发展城乡经济,建设美丽乡村,某乡对A地和B地之间的一处垃圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路AB.如图,经勘测,AC=6千米,∠CAB=60°,∠CBA=37°,则改造后公路AB的长是千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73).13.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是.14.(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)15.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.16.(2023•内蒙古)计算:|﹣2|+(π﹣2023)0+(﹣)﹣2﹣2cos60°.17.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿DE的方向走(12+12)米到达P点.求tan∠CPE的值.18.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)19.(2023•甘孜州)“科技改变生活”,小王是一名摄影爱好者,新入手一台无人机用于航拍.在一次航拍时,数据显示,从无人机A看建筑物顶部B的仰角为45°,看底部C的俯角为60°,无人机A到该建筑物BC的水平距离AD为10米,求该建筑物BC的高度.(结果精确到0.1米;参考数据:,)20.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)(建议用时:30分钟)1.(2024•秦都区校级一模)在Rt△ABC中,AC=8,BC=6,则cosA的值等于()A. B. C.或 D.或2.(2024•秦都区校级一模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15° B.45° C.30° D.60°3.(2024•界首市校级一模)如图,滑雪场有一坡角为18°的滑雪道,滑雪道AC长为150米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.150tan18°米 B.150sin18°米 C.米 D.米4.(2024•道里区模拟)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A、B、D三点在同一直线上,若AB=(8+8)米,则这棵树CD的高度是()A.米 B.米 C.米 D.米5.(2024•浙江模拟)如图,在Rt△ABC中,D为BC的中点,若AD=CD,AB=BD,则tan∠C的值为()A. B.2 C. D.6.(2024•平城区一模)如图是椭圆机在使用过程中某时刻的侧面示意图,已知手柄AD⊥滚轮连杆AB,且AD=20cm,AB=160cm,连杆AB与底座BC的夹角为60°,则该椭圆机的机身高度(点D到地面的距离)为()A. B. C. D.7.(2024•阿城区模拟)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,当跷跷板的一端B着地时,跷跷板AB与地面MN的夹角为20°,测得AB=1.6m,则OC的长为()A. B. C.0.8sin20° D.0.8cos20°8.(2024•雁塔区校级一模)在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是.9.(2024•平城区一模)数学实践小组要测量某路段上一处无标识的车辆限高杆MN的高度AB,如图,他们先用测倾器在C处测得点A的仰角∠AEG=30°,然后在距离C处2米的D处测得点A的仰角∠AFG=45°,已知测倾器的高度为1.6米,C、D、B在一条直线上,则车辆限高杆AB的高度为米.(结果保留根号)10.(2024•秦都区校级一模)计算:(1)sin230°+2sin60°+tan45°+cos230°;(2)﹣2sin45°+2cos60°+|1﹣|+()﹣1.11.(2024•秦都区校级一模)如图,某中学依山而建,校门A处有一坡度i=5:12的斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E处仰望C的仰角是∠CEF=60°,CF的延长线交校门处的水平面于点D.(1)求坡顶B的高度;(2)求楼顶C的高度CD.12.(2024•河南一模)我国的无人机水平位居世界前列,“大疆”无人机更是风靡海外.小华在一条东西走向的笔直宽阔的沿江大道上玩无人机航拍.已知小华身高AB为1.8m,无人机匀速飞行的速度是2m/s,当小华在B处时,测得无人机在C处的仰角为45°;3s后,小华沿正东方向前进3m到达E处,无人机沿正西方向匀速飞行到达F处,此时测得无人机在F处的仰角为72.6°,已知无人机的飞行路线CF平行于地面(直线l).求无人机在C处时距离地面的高度.(结果精确到0.1m,参考数据:sin72.6°≈0.95,cos72.6°≈0.30,tan72.6°≈3.20)13.(2024•沈丘县一模)第31届世界大学生运动会于2023年7月28日在成都举行,主火炬塔位于东安湖体育公园,亮灯之夜,塔身通体透亮,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽,流光溢彩(如图1).小杰同学想要通过测量及计算了解火炬塔CD的大致高度,当他步行至点A处,测得此时塔顶C的仰角为42°,再步行20米至点B处,测得此时塔顶C的仰角为65°(如图2所示,点A,B,D在同一条直线上),请帮小杰计算火炬塔CD的高.(sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,结果保留整数)14.(2024•娄星区校级一模)数学兴趣小组的成员在观察点A测得观察点B在A的正北方向,古树C在A的东北方向,AC=50m;在B处测得C在B的南偏东63.5°的方向上,已知D在C正北
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚前财产权益确认协议(2024年版)2篇
- 2024年度防火隔离门设计与生产合同3篇
- 2024年公寓购买合同:个人与开发商签订的购房协议3篇
- 2024年度特许经营合同:连锁品牌加盟与管理协议
- 二零二四年度咨询合同:企业战略规划与经营指导
- 2024年新型墙板安装承包合同2篇
- 2024年矿泉水销售业绩奖励合同3篇
- 二零二四年度商场三维动画广告租赁3篇
- 2024年展览场地租赁合同书2篇
- 二零二四年度办公场地租赁合同及返租服务协议(2024版)2篇
- 渔光互补光伏项目施工方案设计
- 多功能视讯会议系统项目售后服务方案
- 甲状腺切除术护理查房精编ppt
- DB63∕T 1906-2021 青海省环境卫生精细化管理质量标准
- 新冀美版八年级上册初中美术全册教案(教学设计)
- 部编版四年级语文上册 18 牛和鹅 生字笔顺 课件(PPT16页)
- 特效无痛腹针疗法讲义
- 公司 光伏电站项目投资与工程服务激励方案
- 外研版九年级上册英语课文原文与翻译
- 高血压健康知识讲座ppt
- 然气锅炉运行时烟气含氧量重要性及调整方法
评论
0/150
提交评论