核酸四面体蓝皮书_第1页
核酸四面体蓝皮书_第2页
核酸四面体蓝皮书_第3页
核酸四面体蓝皮书_第4页
核酸四面体蓝皮书_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BlueBookofTetrahediatFrameworkNuc(eicAcid--------------------------------10--------------------------------11--------------------------------12--------------------------------131.4.1 DNA--------------------------------131.4.2 RNA--------------------------------14--------------------------------16--------------------------------20--------------------------------21DNA2.1DNA--------------------------------232.1.1--------------------------------232.1.2.DNA--------------------------------232.2 DNA--------------------------------252.3DNA--------------------------------272.4 DNA--------------------------------292.5 DNA--------------------------------312.6 DNA--------------------------------342.6.1 DNA--------------------------------342.6.2DNA--------------------------------342.6.3 DNA motifs--------------------------------352.6.4 DNA--------------------------------362.6.5 DNA--------------------------------383.1--------------------------------41--------------------------------42--------------------------------43--------------------------------44--------------------------------46--------------------------------47--------------------------------494.1 tFNA--------------------------------534.2 tFNA--------------------------------54--------------------------------554.3.1--------------------------------554.3.2--------------------------------574.3.3--------------------------------594.3.4--------------------------------60--------------------------------634.4.1--------------------------------634.4.2--------------------------------654.4.3--------------------------------66--------------------------------70--------------------------------70--------------------------------72--------------------------------73--------------------------------75--------------------------------75--------------------------------75--------------------------------75--------------------------------77--------------------------------774.7.2 PNA--------------------------------784.7.3 AMP--------------------------------794.7.4 --------------------------------81--------------------------------84--------------------------------86--------------------------------87--------------------------------88--------------------------------89--------------------------------906.1tFNA--------------------------------926.2tFNA--------------------------------94--------------------------------94--------------------------------94--------------------------------95--------------------------------95--------------------------------96--------------------------------96--------------------------------976.3tFNA--------------------------------986.3.1 DNA--------------------------------98--------------------------------99--------------------------------100--------------------------------101--------------------------------102--------------------------------104--------------------------------105--------------------------------114--------------------------------115011.1.1NucleicacidsRNA

1RNADNARNADNA1DNARNARNADNA1DNARNARNADNARNADNADNARNA1.2.1DNADNARNADNARNADNARNA1868FriedrichMiescher 1868Nuclein1869186919 80 519 80 · AlbrechtKossel18891889 · RichardAltmann DNARNA1938 DNAX1938 · WilliamAstbury · FlorenceBell DNADNA1944 DNA1944 · OswaldAvery · ColinMacLeod MaclynMcCarty DNA1953 DNA1953 · JamesWatson · FrancisCrick DNADNA20CRISPR-Cas91.3.1nucleicacid”nucleusDNARNAnucleicacid”nucleusDNARNA.1DNADeoxyribonucleicDeoxyribonucleicacid, DNA18691943DNARNADNADNADNADNADNA——[C] [G] [A] [T]ATCGDNADNADNADNADNA98%DNADNADNA98%DNATUDNARNARNADNARNADNA2DNADNADNA DNA DNA2DNA- -DNADNADNA3.3DNADNADNA3.3343.41.00.33DNA22-262.2-2.6DNA1.7g/cm³DNADNADNADNAD-2-DNA5′5′DNA5′3′3′3′DNA5′D3′DNARNA5′D-2-3′RNADNADNAACGA-TG-CT1.4.2RNARNARNAtRNARNARNARNArRNA3RibonucleicacidRNARNAtRNARNARNARNArRNA3RibonucleicacidRNARNARNARNADNARNARNAmRNAGUACRNARNADNARNARNADNA33DNARNADNARNA1ssRNARNAdsRNARNAtRNA2DNA2'RNADNARNA3DNARNARNA1'5' 1'RNA1'5' 1'ACG U 3' 5'RNARNADNARNA2'-OHARNAminorgrooveRNA2'RNABRNAAmajorgrooveRNAACGΨURNAC-N C-C tRNATΨC IRNARNARNAMg2+RNA——RNA-RNARNA“RNA ”DNARNADNARNAPNAN-(2- )- AEG-CH₂- -(C=O)- N C1.4.3RNADNAPNAPNAPNARNADNAPNAPNAPNAMorpholinoLNAGNATNADNARNAPNAPNAPNAPNA20—25PNADNAPNADNA/DNA PNA/DNAPNA/RNAPNApHPNAPNA4PNAsen1991PeptideNucleicAcidDNARNA PeterE.MichaelPNAPNAPNA20—25PNADNAPNADNA/DNA PNA/DNAPNA/RNAPNApHPNAPNA4PNAsen1991PNAPNADNAPNAPNAPNADNAPNAPNA6PNA/DNATm 31℃10℃ PNA DNA PNA/PNA6 DNA/DNAPNA/DNADNARNALiuPNA 2015 Jain A PNAMorpholinoPNADNAPNA16SRNA25MorpholinoMorpholino25MorpholinoMorpholinoSummertonGeneToolsAntiViralsInc.PMOSareptaTherapeuticsWellerMorpholinoPMODNAMorpholinoRNARNApHMorpholinoMorpholino RNApHMorpholinoMorpholinoMorpholinoRNAMorpholinoRNADNA525RNA Thiophosphates siRNA Morpholino 5RNALNALNALockedNucleicAcidLNABridgedNucleicAcidBNARNA LNA2' 4'63'-endoALNALNALNA DNALNA ObikaLNALNAObika1997StephensonLNA ObikaLNALNAObika1997StephensonJesperWengel19981978LNARNAD-VorbrügenLNADNAssDNALNADNAdsDNARNALNAGlycolNucleicAcid GNA6LNA*2' 4'GNADNARNA-DNARNA-GNAGNADNARNA-DNARNA-GNAGNAGNAGNARNA7DNAGNA1971UedaDNA23SeitaCookGNA-GNA19951999AcevedoAndrews1996ZhangMeggers2005EssenMeggers GNAGNA7GNADNAGNARNA GNAGNAGNAGNAGNATNATNAThreoseNucleicAcidTNATNA·AlbertEschenmoserRNAXNAThreoseNucleicAcidTNATNA·AlbertEschenmoserRNAXNATNADNARNATNADNARNATNA8DNARNA5'3'TNA5'TNATNATNATNADNADNAPCRDNATNATNATNATNATNADNARNATNATNATNATNATNARNATNA8TNADNADNARNADNARNA02 DNA49DNA1982 1983 1991 1994 1999 DNA DNA3DDNA

DNA DNA19992000 2002 2002 2006 200719991DDNA

3DDNA

DNA

-DNADNA20142008 2009 2010 2011 201220143DDNADNADNA

3D

DNA

DNA

RNADNA

DNA

DNA

RNADNA

AFM20152023 2020 2019 2017 20162015DNA

DNA DNA DNA DNA DNA*(a)DNA*(a)DNA(b)DNADNA.1DNADNADNADNADNA10DNA*DNA10DNA*DNADNAtileassemblyDNAtiling 1980 NedSeemanDNADNAtileassemblyDNAtiling 1980 NedSeemanDNAWatson-Crick10(a) Seeman10(b)DNADNA Holliday1983 DNAdouble-crossover DXDXDNADNADNADXDNAtilesDNADNADNADXAFMDNADNA1999DXDNADNADNADXDNAZ-DNA[Co(NH3)6]3+B-DNADNA**DNADNADNA1980 19982D3DDNADNADNA1980 19982D3DDNADNADNADNADNADNADNADNADNADXDNA>1000DNADNAWangtilesWangtilesDNADNAWangtilesDNAWangtilesDNAWangtileDNAWangtileDNAWangtileDNA1111DNA*(a)DNADNA(b)DNA(c)WangtilesDNAWangDNA2.3.1DNA2006 Paul2006 PaulRothemundDNADNADNARothemundRothemundDNADNAorigami12DNA“DNADNA12DNADNADNADNADNA8000-10000DNA200DNADNADNADNAsingle-strandedtileDNADNAsingle-strandedtileDNADNAbrickassemblyPengYinDNADNADNA30DNADNADNADNAWenyanLiuDNANDNARNARNARNARNARNARNARNA RNA RNARNARNA13DNADNA14** DNA DNA DNA14** DNA DNA DNA**15DNADNA16DNA15DNADNA16DNA*(a)*(a) DNA (b) DNA**17DNA“17DNA“ ”tweezer(b)ABCF*(a)DNA“ ”18DNA18DNA**PX*PX JX219(a)DNA“”(b)19(a)DNA“”(b)DNA2020DNA2121DNA**(a)*(a) DNA (b) (c).1DNADNADNADNADNADNADNADNADNADNADNADNADNADNADNADNADNA22DNADNA22DNADNADNADNAstructuralmotifsDNADNA22DNADNADNADNADNADNADNADNADNADNADNADNA2.6.3DNA2.6.3DNAmotifsmotifs2323DNA2424AdenineCyanuricacid2.6.4DNA25DNA-DNA2.6.4DNA25DNA-DNA26DNA*DNA(c)26DNA*DNA(c)(b)DNA*(a)DNADNA.5DNA27DNA27DNADNA(DNAcages)DNADNAnn=56n=68n=78π(b) DNAπ(b) DNADNA*(a)Distance(nm)Self-assemblyBluntend28DNAHeight**0329tFNA29tFNA30tFNA30tFNA(a)(b)StrandsStrands1ntHingesLigate20bpEdgesForce[nm]Force[nm]••31tFNACompression[nm]•31tFNACompression[nm]2tFNADNA32tFNADNA33tFNAsiRNA33tFNAsiRNA.2.4.tFNA34tFNA34tFNAtFNAtFNAtFNA5tFNADNARAW264.735tFNADNARAW264.736tFNADNARAW264.736tFNADNARAW264.7lipidraftlowrepulsionhighrepulsion37tFNA37tFNA04tFNAtFNAtFNAtFNA” tFNA”tFNAtFNAtFNAtFNA” tFNA”tFNAtFNAtFNAtFNAtFNA38tFNA β-cateninLef1cyclin38tFNA β-cateninLef1cyclinDtFNA24htFNA24h12h0h62.5nM125nM250nMControltFNACellnumber39tFNA39tFNA•••40tFNA40tFNAHealthycornea Control(day7) Control(day7) Control(day14) Control(day14)cm221%controltFNA4.341tFNAcm221%controltFNA4.341tFNAAcontrol Acontrol AGEs GEs+tFNAsROS42tFNA42tFNA43tFNA44tFNA44tFNA45tFNACasp345tFNACasp346tFNA46tFNA47tFNAmiRNA47tFNAmiRNA48tFNA48tFNA49tFNA49tFNA◼◼50tFNA50tFNA◼51tFNA51tFNA5252tFNA siRNA53tFNA53tFNA54tFNA-MRSAtFNA+100nMtFNA54tFNA-MRSAtFNA+100nMtFNAControl55tFNAPNA55tFNAPNA56tFNAAMP56tFNAAMPtFNA-ASOtFNA-ASOtFNA-ASOtFNA-ASOtFNA-ASOtFNA-ASO57TNDASObiofilmsCrystalvioletstainingCrystalvioletstaining48hCrystalvioletstaining24h053323tFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNA————tFNA————tFNAtFNA tFNAtFNA3—53—55.1.2.tFNAtRNAtRNAtFNAtherapeuticdb/dbtFNAtherapeuticdb/dbtFNAtFNAtFNAtFNA58tFNABiRDSBiRDSCLOCK58tFNABiRDSBiRDSCLOCKERKBiRDSmiR-31CLOCKCLOCKtFNAtFNAHDFstFNAtFNAtFNAHDFstFNAtFNA2022inhibitordeliverysystemBiRDStFNABiRDSmiRNA“”bioswitchable miRmiRNA“miRNA”tFNAmiRNARNAmiR-31HFSCsBiRDSmiRNABiRDSBiRDSHFSCsCLOCK14BiRDSRNABiRDSRNABiRDSBiRDStFNAmiRNAmiRNAtFNAmiRNABiRDSRNAtFNAtFNAtFNA / tFNAtFNAtFNAtFNA / tFNA tFNAtFNAtFNAGlabridin,Gla2023tFNAGlatFNA-GlatFNA-GlatFNA-Gla21.50nmtFNA-Gla Cy5 tFNA-Gla 6CCK-8tFNA-GlaWesternblottFNAGla1:160B16GlaTYRtFNA-GlatFNA-GlaTRP-1TRP-2MITF59tFNAUVBUVB280-320nmUVBROSDNAtFNA60tFNAtFNALANF-κBNF-κBIκBUVBNF-κBTLANF-κBNF-κBIκBNF-κBTLAIL-UVBROSBcl-2250%HDFTLATLAROSROSUVBROSBcl-2250%HDFTLATLAROSROSBaxCaspase-3TLATLATLA

TLA 60 H&E TLAMasson TLA CVFTLA NF-κB Collagen-1Collagen-3TLATLALAtFNATLATLATLAUVBFDA/Incytebaricitinib2%tFNAtFNAFDA/Incytebaricitinib2%tFNAtFNA miR-31BiRDSBiRDStFNAtFNAtFNAtFNAtFNAtFNAtFNA 100%-QTQTQTtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAsiRNAtFNATAsiRNASTTκBNF-κBp65tFNASTTNF-κB TNF-αIL-6IL-23psoriasisTA STTSTTtFNAmiRNABiRDSBiRDS“” “BiRDS”miRNATGF-βmiR-27aEMTBiRDSBiRDSIBiRDSNLRP3tFNA BiRDSBiRDSmiRNAtFNAtFNAtFNAtFNA06tFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNADNA tFNA6.1.1tFNADNADNADNADNAtFNA100nt300-600ntDNADNADNADNA◼tFNA1kb1kb100-3000.10-0.30tFNA Praetorius 2017 NatureDNADNAzymecassettes ——tFNADNA——tFNADNA1/3 tFNAtFNAtFNAtFNAtFNA61tFNA3ssDNA的切割和组装2ssDNA的提取1表达菌株的构建和培养tFNAtFNAtFNAtFNAtFNAtFNA6.2.1tFNARhEOECDtFNAtFNARhEOECDtFNA3042 MTTtFNAtFNA94.61%OECDTG439 50%2.50% OECDTG439 tFNANItFNAtFNAtFNAtFNA tFNA6.2.2tFNAOECDTG492RhCESkinEthicHCEtFNAtFNAOECDTG492RhCESkinEthicHCEtFNAHCEMTTMTT60%4OECD4tFNAHCE97.88%60%tFNA100%GHStFNAtFNAtFNAtFNAtFNA6.2.3tFNAOECDTG4323T3NRUBalb/c3T3tFNAtFNAOECDTG4323T3NRUBalb/c3T3tFNAUVA <0.1PIF2≤PIF<50.1≤MPE<0.15MPEOECDTG432 PIF<2MPEPIF≥5MPE≥0.15tFNAMPE -0.012PIF *1.000*MPE=0.333PIF=17.876tFNAtFNAtFNAtFNA6.2.4tFNA3760201550.176.10306tFNA3760201550.176.10306240.020~0.025mLtFNA240.524485043029 013.33%12tFNA96.67%tFNA48tFNAtFNAtFNAtFNA tFNA6.2.5

AmesTA97aTA98TA100TA1535WP2uvrApKM101

2015 8tFNAtFNA5.00μL/+S9-S9TA1535S9tFNAS9tFNAtFNA5.00μL/tFNAtFNAtFNADNAtFNA6.2.6tFNAtFNAS9mixtFNAtFNAS9mixtFNA5μL/mL2.5μL/mL1.25μL/mL/mLtFNA MEM4CHL 210⁵S94h/24h424MMSCP20024htFNAtFNA5μL/mL2.5μL/mL1.25μL/mLMMSCP87.8%04h4h0%12.0%2015tFNAtFNAtFNA6.2.7tFNAtFNA1tFNANIDNAtFNAtFNAtFNAtFNAtFNAtFNAtFNADNA8-CPDDNA8-CPD 8-DNACPD 70%-80% 8-CPDtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNA6.3.1 DNASchumacher2021NatureDNASchumacher2021NatureDNADNADNAtFNA600mJ/cm²UVBDNAEpiKutis®DNAtFNA0.5ppm1ppm1.5ppm E62tFNA tFNAtFNA0.5ppm1ppm1.5ppm8-32.04%74.03%77.07%tFNADNACPDtFNA0.5ppm1ppm1.5ppmtFNACPD75.77%80.83%99.69%tFNADNACPDtFNADNAtFNADNA8-DNAtFNAtFNAUVA2,4-0.5ppm1ppm1.5ppmDNPHtFNAtFNADNPH22.34%34.26%78.17%tFNA6.3.2tFNAFulKutisMGOtFNAFulKutisMGOCML0.5ppm1ppm1.5ppmAGEstFNAUVAtFNACMLCML16.35%35.22%41.51%tFNA63tFNAtFNAtFNA————tFNAtFNAtFNA6.3.3autophagyAtgLC3-II LC3bLC3LC3-IILC3-IIautophagyAtgLC3-II LC3bLC3LC3-IILC3-IItFNAppm1ppm1.5ppm tFNAtFNA0.5ppmtFNA0.5IFLC3b64tFNA1ppm1.5ppmtFNA64.00%103.00%107.00%LC3btFNALC3b37.00%39.00%50.00% tFNAtFNALC3btFNA64tFNALC3b6.3.4Telomere-inducedsenescenceReplicativesenescencetFNATelomere-inducedsenescenceReplicativesenescencetFNAP403400μM2tFNAP16P21SA-β-galβ-P16CDK4 CDK6Rbp16p16p16Cyclin-dependentkinasesβ-P21CDKsSA-β-galsenescence-associatedβgalactosidasepH6.0β-galX-gal pH6.0β-galβ-P16P21P16 Rb P21SA-β-galtFNAP16P16tFNAP21tFNA34.07%55.56%76.30%P210.5ppm1ppm1.5ppm25.16%34.19%50.32%SA-β-galtFNA22.73%31.74%0.5ppm1ppm1.5ppmtFNASA-β-gal19.62%tFNAtFNAP16P21tFNASA-β-gal65tFNA6.3.5

ROS ATP

ROS ATPROS tFNAtFNAROSATPROSROSDNAROSROSDNADNADNADNAROSROS tFNAATPATP3ATP ATPATPATPATPATPJC-1JC-1JC-1ROS66tFNAROSROS0.5ppm1ppm1.5ppmtFNA25.64%39.49%43.59% tFNAATP67ATP67tFNA ATPUVA30J/cm2UVAATP tFNA0.5ppm1ppm1.5ppm tFNA 52.80%58.35%88.21%tFNA68tFNA0.5ppm1ppm1.50.5ppmtFNA103.37%208.99%249.44%tFNA1ppmATP1.5ppmtFNAtFNAROSATP tFNAtFNAtFNAtFNAtFNA1 1DNADNAtFNADNA2 2tFNAtFNA3 3tFNAtFNAtFNA4 4tFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAtFNAWatsonJDCrickFH(April1953)."Molecularstructureofnucleicacids;astructurefordeoxyribosenucleicacid".Nature.171(4356):737–8.NielsenPE(December2008)."TripleHelix:DesigningaNewMoleculeofLife".ScientificAmerican.299(6):64–71.GuptaAMishraAPuriN(October2017)."Peptidenucleicacids:Advancedtoolsforbiomedicalapplications".JournalofBiotechnology.259:148–159.BrudnoYBirnbaumMEKleinerRELiuDR(February2010)."Aninvitrotranslationselectionandamplificationsystemforpeptidenucleicacids".NatureChemicalBiology.6(2):148–55.JainHVVerthelyiDBeaucageSL(2015)."Amphipathictrans-actingphosphorothioateelementsmediatethedeliveryofunchargednucleicacidsequencesinmammaliancells".RSCAdvances.5(80):65245–65254.SummertonJE(2017)."InventionandEarlyHistoryofMorpholinos:FromPipeDreamtoPracticalProducts".MorpholinoOligomers.MethodsinMolecularBiology.Vol.1565.HumanaPress(Springer).pp.1–15.ISBN978-1-4939-6817-6.SummertonJ WellerD(June1997)."Morpholinoantisenseoligomers:design preparation andproperties".Antisense&NucleicAcidDrugDevelopment.7(3):187–95.ElayadiAnissaN.;BraaschDwaineA.;CoreyDavidR.(August2002)."ImplicationsofHigh-AffinityHybridizationbyLockedNucleicAcidOligomersforInhibitionofHumanTelomerase".Biochemistry.41(31):9973–9981.ObikaSatoshi;Daishu;HariYoshiyuki;MorioKen-ichiro;InYasuko;IshidaToshimasa;ImanishiTakeshi(1997-12-15)."Synthesisof2′-O4′-C-methyleneuridineand-cytidine.NovelbicyclicnucleosideshavingafixedC3-endosugarpuckering".TetrahedronLetters.38(50):8735–87OrumMiriamFriedenandHenrik(2008-03-31)."LockedNucleicAcidPromiseintheTreatmentofCancer".CurrentPharmaceuticalDesign.14(11):1138–1142.ZhangLPeritzAMeggersE(March2005)."Asimpleglycolnucleicacid".JournaloftheAmericanChemicalSociety.127(12):4174–5SchlegelMKEssenLOMeggersE(July2008)."Duplexstructureofaminimalnucleicacid".JournaloftheAmericanChemicalSociety.130(26):8158–9.SchlegelMK EssenLO MeggersE(February"AtomicresolutionduplexstructureofthesimplifiednucleicacidGNA".ChemicalCommunications.46(7):1094–6.SchöningK.U.etal.Chemicaletiologyofnucleicacidstructure:thea-threofuranosyl-(3'-->2')oligonucleotidesystem.Science2901347-1351(2000)EschenmoserA.Chemicaletiologyofnucleicacidstructure.Science2842118-2124(1999).PinheiroV.B.etal.Syntheticgeneticpolymerscapableofheredityandevolution.Science336341-344(2012).LiuL.S.etal.alpha-l-ThreoseNucleicAcidsasBiocompatibleAntisenseOligonucleotidesforSuppressingGeneExpressioninLivingCells.ACSApplMaterInterfaces109736-9743(2018).SeemanN.C.&BelcherA.M.Emulatingbiology:buildingnanostructuresfromthebottomup.Proc.NatlAcad.Sci.USA996451–6455(2002).PinheiroAV HanD ShihWMYanH(November2011).andopportunitiesforstructuralnanotechnology".NatureNanotechnology.6(12):763–772.History:PeleskoJA(2007).Self-assembly:thescienceofthingsthatputthemselvestogether.York:Chapman&Hall/CRC.pp.201242259.ISBN978-1-58488-687-7.SeemanN.C.Nucleic-acidjunctionsandlattices.J.Theor.Biol.99237–247(1982).KallenbachN.R.MaR.I.&SeemanN.C.Animmobilenucleic-acidjunctionconstructedfromoligonucleotides.Nature305829–831(1983).ChenJ.H.&SeemanN.C.SynthesisfromDNAofamoleculewiththeconnectivityofacube.Nature350(1991).FuT.J.&SeemanN.C.DNAdouble-crossovermolecules.Biochemistry323211–3220(1993).WinfreeE.LiuF.R.WenzlerL.A.&SeemanN.C.Designandself-assemblyoftwo-dimensionalDNAcrystals.Nature394539–544(1998).MaoC.D.SunW.Q.ShenZ.Y.&SeemanN.C.AnanomechanicaldevicebasedontheB–ZtransitionofDNA.Nature397144–146(1999).Lin C. Liu Y. S.&Yan H.tilebasedself-assembly:buildingcomplexnanoarchitectures.ChemPhysChem71641–1647(2006).McBride L.J.&Caruthers M.H.Aninvestigationofseveraldeoxynucleosidephosphoramiditesusefulforsynthesizingdeoxyoligonucleotides.TetrahedronLett.24245–248(1983).Aldaye F.A. Palmer A.L.&Sleiman H.F.AssemblingmaterialswithDNAastheguide.Science3211795–1799(2008).Hamblin G.D. J.F.&Sleiman H.F.Sequentialgrowthoflongstrandswithuser-definedpatternsfornanostructuresandscaffolds.Nat.Commun.67065(2015).Rothemund P.W. Papadakis N.&Winfree E.Algorithmicself-assemblyofSierpinskitriangles.PLoSBiol.2e424(2004).RothemundP.W.FoldingDNAtocreatenanoscaleshapesandpatterns.Nature440297–302(2006).ShihW.M. Quispe J.D.&Joyce G.F.A1.7-kilobasesingle-strandedthatfoldsintoananoscaleoctahedron.Nature427618–621(2004).Yan H. LaBean T.H. Feng L.&Reif J.H.Directednucleationassemblyoftilecomplexesforbarcode-patternedlattices.Proc.NatlAcad.Sci.USA1008103–8108(2003).Hong F. Zhang F. Liu Y.andYan H. 2017.origami:scaffoldsforcreatinghigherorderstructures.Chemicalreviews117(20)pp.12584-12640.Wei B. Dai M.J.&Yin P.Complexshapesself-assembledfromsingle-strandedtiles.Nature485 (2012).SchmidtT.L.etal.Scalableamplificationofstrandsubsetsfromchip-synthesizedoligonucleotidelibraries.Nat.Commun.68634(2015).Li W. Yang Y. Jiang S.X. Yan H.&Liu Y.ControllednucleationandgrowthofDNAtilearrayswithinprescribedDNAorigamiframesandtheirdynamics.J.Am.Chem.Soc.1363724–3727(2014).LiuW. ZhongH.WangR.&Seeman N.C.Crystallinetwo-dimensionalDNA-origamiarrays.Angew.Chem.Int.Ed.50264–267(2011).Geary C. Rothemund P.W.&Andersen E.S.Asingle-strandedarchitectureforcotranscriptionalfoldingofnanostructures.Science345799–804(2014).Hao C.H.etal.ConstructionofRNAnanocagesbyre-engineeringthepackagingRNAofPhi29bacteriophage.Nat.Commun.53890(2014).Delebecque C.J. Lindner A.B. Silver P.A.&Aldaye F.A.OrganizationofintracellularreactionswithrationallydesignedRNAassemblies.Science333470–474(2011).Chen J.H.&Seeman N.C.SynthesisfromDNAofamoleculewiththeconnectivityofacube.Nature350 (1991).ZhangY.&SeemanN.C.ConstructionofaDNA-truncatedoctahedron.J.Am.Chem.Soc.1161661–1669(1994).ShihW.M. Quispe J.D.&Joyce G.F.A1.7-kilobasesingle-strandedthatfoldsintoananoscaleoctahedron.Nature427618–621(2004).Goodman R.P. Berry R.M.&Turberfield A.J.Thesingle-stepsynthesisofaDNAtetrahedron.Chem.Commun.(Camb.)1372–1373(2004).AldayeF.A.&SleimanH.F.Modularaccesstostructurallyswitchable3DdiscreteDNAassemblies.J.Am.Chem.Soc.12913376–13377(2007).ShihW.M.&LinC.KnittingcomplexweaveswithDNAorigami.Curr.Opin.Struct.Biol.20276–282(2010).HanD.R.etal.DNAorigamiwithcomplexcurvaturesinthree-dimensionalspace.Science332342–346(2011).AndersenE.S.etal.Self-assemblyofananoscaleDNAboxwithacontrollablelid.Nature45973–75(2009).KeY.etal.ScaffoldedDNAorigamiofaDNAtetrahedronmolecularcontainer.NanoLett.92445–2447(2009).HanD.R.etal.DNAorigamiwithcomplexcurvaturesinthree-dimensionalspace.Science332342–346(2011).Endo M. Hidaka K. Kato T. Namba K.&Sugiyama H.prismstructuresconstructedbyfoldingofmultiplerectangulararms.J.Am.Chem.Soc.13115570–15571(2009).BensonE.etal.DNArenderingofpolyhedralmeshesatthenanoscale.Nature523441–444(2015).J.77(2009).J.

etal.Frommoleculartomacroscopicviatherationaldesignofaself-assembled3DDNAcrystal.Nature46174–Zhao J.etal.Post-assemblystabilizationofrationallydesignedDNAcrystals.Angew.Chem.Int.Ed.54 (2015).an H. Zhang X.P. Shen Z.Y.&Seeman N.C.ArobustDNAmechanicaldevicecontrolledbyhybridizationtopology.Nature41562–65(2002).Feng L. Park S.H. Reif J.H.&Yan H.Atwo-statelatticeswitchedbyDNAnanoactuator.Chem.Int.Ed.424342–4346(2003).YinP.ChoiH.M.CalvertC.R.&PierceN.A.Programmingbiomolecularself-assemblypathways.Nature451318–322(2008).Omabegho T. Sha R.&Seeman N.C.AbipedalDNABrownianmotorwithcoordinatedlegs.Science324 (2009).HeY.&LiuD.R.AutonomousmultisteporganicsynthesisinasingleisothermalsolutionmediatedbyaDNAwalker.Nat.Nanotechnol.5778–782(2010).Gu H. Chao J. Xiao S.-J.&Seeman N.C.Dynamicpatterningprogrammedbytilescapturedonaorigamisubstrate.Nat.Nanotechnol.4245–248(2009).LoP.K.AltvaterF.&SleimanH.F.TemplatedsynthesisofDNAnanotubeswithcontrolledpredeterminedlengths.J.Am.Chem.Soc.13210212–10214(2010).Yang Y. Endo M. Hidaka K.&Sugiyama H.Photo-controllableDNAorigaminanostructuresassemblingintopredesignedmultiorientationalpatterns.J.Am.Chem.Soc.13420645–20653(2012).Maye M.M. Kumara M.T. Nykypanchuk D. Sherman W.B.&Gang O.SwitchingbinarystatesnanoparticlesuperlatticesanddimerclustersbyDNAstrands.Nat.Nanotechnol.5116–120(2010).I.Kahn J.S. Hu Y.&WillnerChem.Res.50680–690(2017).I.

Stimuli-responsiveDNA-basedhydrogels:frombasicprinciplestoapplications.Acc.SeemanN.C.Nucleic-acidjunctionsandlattices.J.Theor.Biol.99237–247(1982).ShiJ.F.&BergstromD.E.Assemblyofnovelcycleswithrigidtetrahedrallinkers.Chem.Int.Ed.Engl.36111–113(1997).Aldaye F.A.&Sleiman H.F.Sequentialself-assemblyofaDNAhexagonasatemplatefortheorganizationofgoldnanoparticles.Angew.Chem.Int.Ed.1182262–2267(2006).GreschnerA.A.ToaderV.&SleimanH.F.Theroleoforganiclinkersindirectingself-assemblyandsignificantlystabilizingDNAduplexes.J.Am.Chem.Soc.13414382–14389(2012).J.C.&Switzer C.ADNApentaplexincorporatingnucleobasequintets.Proc.NatlAcad.Sci.USA96 10614–10619(1999).AvakyanN.etal.ReprogrammingtheassemblyofunmodifiedDNAwithasmallmolecule.Nat.Chem.8368–376(2016).Leal N.A.etal.Transcription reversetranscription andanalysisofcontainingartificialgeneticcomponents.ACSSynth.Biol.4407–413(2015).FMalyshevD.A.&Romesberg .E.Theexpandedgeneticalphabet.Angew.Chem.Int.Ed.5411930–11944(2015).FZhangY.etal.Asemisyntheticorganismengineeredforthestableexpansionofthegeneticalphabet.Proc.NatlAcad.Sci.USA1141317–1322(2017).Vargas-BacaI.MitraD.ZulyniakH.J.BanerjeeJ.&SleimanH.F.Solid-phasesynthesisoftransitionmetallinkedbranchedoligonucleotides.Angew.Chem.Int.Ed.404629–4632(2001).McLaughlinC.K.HamblinG.D.&SleimanH.F.Supramolecularassembly.Chem.Soc.Rev.40(2011).Yang H. A.Z. McLaughlin C.K.&Sleiman H.F.TemplatedligandenvironmentsfortheselectiveincorporationofdifferentmetalsintoDNA.Angew.Chem.Int.Ed.489919–9923(2009).Yang H.etal.Chiralmetal–DNAfour-armjunctionsandmetalatednanotubularstructures.Chem.Int.Ed.504620–4623(2011).Yang H. A.Z. McLaughlin C.K.&Sleiman H.F.TemplatedligandenvironmentsfortheselectiveincorporationofdifferentmetalsintoDNA.Angew.Chem.Int.Ed.489919–9923(2009).KaulC.MullerM.WagnerM.SchneiderS.&CarellT.Reversiblebondformationenablesthereplicationandamplificationofacrosslinkingsalencomplexasanorthogonalbasepair.Nat.Chem.3794–800(2011).CleverG.H.KaulC.&CarellT.DNA–metalbasepairs.Angew.Chem.Int.Ed.466226–6236(2007).EndoM. Shiroyama T. FujitsukaM.&MajimaT.Four-way-branchedDNA-porphyrinconjugatesforconstructionoffourdouble-helix-DNAassembledstructures.J.Org.Chem.707468–7472(2005).MaiY.Y.&EisenbergA.Self-assemblyofblockcopolymers.Chem.Soc.Rev.415969–5985(2012).M.-P. Rush A.M. Thompson M.P.&Gianneschi N.C.Programmableshape-shiftingmicelles.Chem.Int.Ed.495076–5080(2010).Chidchob P. T.G. Serpell C.J.&H.F.Synergyoftwoassemblylanguagesinnanostructures:self-assemblyofsequence-definedpolymersonDNAcages.J.Am.Chem.Soc.1384416–4425(2016).ListJ.WeberM.&SimmelF.C.Hydrophobicactuationofaorigamibilayerstructure.Chem.Int.Ed.534236–4239(2014).J.W.etal.DynamicbehaviorofDNAcagesanchoredonsphericallysupportedlipidbilayers.J.Am.Chem.Soc.13612987–12997(2014).Endo M.&SugiyamaH.Lipid-bilayer-assistedtwo-dimensionalself-assemblyoforigaminanostructures.Nat.Commun.68052(2015).YangY.etal.Self-assemblyofsize-controlledliposomesonDNAnanotemplates.Nat.Chem.8476–483(2016).J.Knudsen B.etal.Routingofindividualpolymersindesignedpatterns.Nat.Nanotechnol.10892–898(2015).J.SeemanNC.Nucleicacidjunctionsandlattices.JTheorBiol.1982;99(2):237–247.doi:10.1016/0022-5193(82)90002-9LIS TIANT ZHANGT etalAdvancesinbiologicalapplicationsofself-assembledtetrahedralnanostructures.MaterToday.2019;24:57–68.R.P.Goodmanetal.RapidChiralAssemblyofRigidBuildingBlocksforMolecularNanofabrication.Science3101661-1665(2005).DOI:10.1126/science.1120367R.P.Goodmanetal.RapidChiralAssemblyofRigidBuildingBlocksforMolecularNanofabrication.Science3101661-1665(2005).DOI:10.1126/science.1120367Zagorovsky K. Chou L.Y.T.&Chan W.C.W.ControllingDNA–nanoparticleseruminteractions.Proc.Natl.Acad.Sci.USA11313600–13605(2016).MathurDRogersKEDíazSAetal.DeterminingthecytosolicstabilityofsmallDNAnanostructuresincellula.NanoLett.2022;22(12):5037–5045.doi:10.1021/acs.nanolett.2c009175Chandrasekaran A.R.NucleaseResistanceofNanostructures.Nat.Rev.2021510.1038/s41570-021-00251-y

(4) 225–239 DOI:ChandrasekaranA.R.;VilcapomaJ.;DeyP.;Wong-DeyrupS.W.;DeyB.K.;HalvorsenK.ExceptionalNucleaseResistanceofParanemicCrossover(PX)DNAandCrossover-DependentBiostabilityofDNAMotifs.J.Am.Chem.Soc.2020142(14)6814–6821DOI:10.1021/jacs.0c02211HongSJiangWDingQLinKZhaoCWangX.TheCurrentPr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论