2025届辽宁师大学附中高考冲刺数学模拟试题含解析_第1页
2025届辽宁师大学附中高考冲刺数学模拟试题含解析_第2页
2025届辽宁师大学附中高考冲刺数学模拟试题含解析_第3页
2025届辽宁师大学附中高考冲刺数学模拟试题含解析_第4页
2025届辽宁师大学附中高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁师大学附中高考冲刺数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.632.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.3.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,4.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.5.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则6.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.7.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.8.在原点附近的部分图象大概是()A. B.C. D.9.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.1910.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为()A. B. C. D.11.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A. B.9 C.7 D.12.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.14.已知平面向量,的夹角为,且,则=____15.如图,在复平面内,复数,对应的向量分别是,,则_______.16.的展开式中项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.18.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.19.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.20.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.21.(12分)设函数,其中.(Ⅰ)当为偶函数时,求函数的极值;(Ⅱ)若函数在区间上有两个零点,求的取值范围.22.(10分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.2、A【解析】

设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.3、C【解析】

根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.4、C【解析】

根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.5、D【解析】

利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.6、B【解析】

计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.7、B【解析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.8、A【解析】

分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9、B【解析】

计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.10、B【解析】

根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.11、B【解析】试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B.考点:圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值.12、D【解析】

如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.14、1【解析】

根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.15、【解析】试题分析:由坐标系可知考点:复数运算16、40【解析】

根据二项定理展开式,求得r的值,进而求得系数.【详解】根据二项定理展开式的通项式得所以,解得所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】

(1)由奇函数可知在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于恒成立的问题,常转化为求的最小值,使;对于恒成立的问题,常转化为求的最大值,使.18、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.19、(1),最大值公顷;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。20、(1)证明见解析;(2).【解析】

(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,连接BD,则.以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,,,,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【点睛】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.21、(Ⅰ)极小值,极大值;(Ⅱ)或【解析】

(Ⅰ)根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,(Ⅱ)先分离变量,转化研究函数,,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围.【详解】(Ⅰ)由函数是偶函数,得,即对于任意实数都成立,所以.此时,则.由,解得.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递增.所以有极小值,有极大值.(Ⅱ)由,得.所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.对函数求导,得.由,解得,.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论