北京东城区五中2025届高三下学期联考数学试题含解析_第1页
北京东城区五中2025届高三下学期联考数学试题含解析_第2页
北京东城区五中2025届高三下学期联考数学试题含解析_第3页
北京东城区五中2025届高三下学期联考数学试题含解析_第4页
北京东城区五中2025届高三下学期联考数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京东城区五中2025届高三下学期联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数(为虚数单位)在复平面内对应的点的坐标是()A. B. C. D.2.下列函数中,值域为的偶函数是()A. B. C. D.3.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A. B. C.2 D.4.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.5.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.6.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.7.在中,在边上满足,为的中点,则().A. B. C. D.8.已知集合,,若,则()A. B. C. D.9.设,则()A. B. C. D.10.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限11.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A. B. C. D.12.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中,含项的系数为______.14.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.15.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.16.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.18.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.19.(12分)己知等差数列的公差,,且,,成等比数列.(1)求使不等式成立的最大自然数n;(2)记数列的前n项和为,求证:.20.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面积.21.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望22.(10分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.2、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.3、A【解析】

由题意,可得,,消去得,可得,继而得到,代入即得解【详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.4、D【解析】

先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.5、A【解析】

根据输入的值大小关系,代入程序框图即可求解.【详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.6、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.7、B【解析】

由,可得,,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.8、A【解析】

由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.9、C【解析】试题分析:,.故C正确.考点:复合函数求值.10、C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.11、A【解析】

设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.12、A【解析】

求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.14、【解析】

由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.15、【解析】

设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.

由可得,

则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.16、【解析】

不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a,求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为中点,E为AB的三等分点(靠近点A),设棱长为a,,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)见解析.【解析】

(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所以,曲线的直角坐标方程为.将直线的极坐标方程化为普通方程得,联立,得或,则点、,因此,线段的中点为;(2)由(1)得,,易知的垂直平分线的参数方程为(为参数),代入的普通方程得,,因此,.【点睛】本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.18、(1);(2)【解析】

(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.19、(1);(2)证明见解析【解析】

(1)根据,,成等比数列,有,结合公差,,求得通项,再解不等式.(2)根据(1),用裂项相消法求和,然后研究其单调性即可.【详解】(1)由题意,可知,即,∴.又,,∴,∴.∴,∴,故满足题意的最大自然数为.(2),∴...从而当时,单调递增,且,当时,单调递增,且,所以,由,知不等式成立.【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.20、(1);(2)或.【解析】

(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;(2)根据余弦定理求出b=1或b=3,结合面积公式求解.【详解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C为三角形内角,∴sinC,∴S△ABCabsinC3×bb,则△ABC的面积为或.【点睛】此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积.21、(1)(2)22.5(3)见解析,【解析】

(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望.【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为:0期望为:【点睛】本题考查概率、平均利润、离散型随机变量的分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论