专题05 易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略(解析版)_第1页
专题05 易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略(解析版)_第2页
专题05 易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略(解析版)_第3页
专题05 易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略(解析版)_第4页
专题05 易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题05易错易混专题:分式与分式方程中常见的易错与含参数压轴题六种模型全攻略【考点导航】目录TOC\o"1-3"\h\u【典型例题】 1【易错一分式值为0时求值,忽略分母不为0】 1【易错二分式混合运算易错】 4【易错三自主取值再求值时,忽略分母或除式不能为0】 9【易错四解分式方程不验根】 13【易错五分式方程无解与增根混淆不清】 18【易错六已知方程的根的情况求参数的取值范围,应舍去分母为0时参数的值】 22【典型例题】【易错一分式值为0时求值,忽略分母不为0】例题:(2024上·云南昭通·八年级统考期末)若分式,则x的值为(

)A. B. C.1 D.【答案】D【分析】本题考查了分式的值为0的条件,根据题意可得,即可求解.【详解】解:依题意,,解得:,故选:D.【变式训练】1.(2024上·广东云浮·八年级罗定中学校联考期末)分式的值为0,则的值为(

)A.2或 B.或 C. D.【答案】D【分析】本题主要考查了分式值为0的条件,根据分式值为0的条件是分子为0,分母不为0得到,解之即可得到答案.【详解】解:∵的值为0,∴,解得,故选:D.2.(2023上·内蒙古通辽·八年级统考期末)若分式的值为零,则的值是(

)A.2或 B.2 C. D.4【答案】C【分析】本题考查了分式值为零的条件,当分式的值为0时,分子为0,分母不为0,即可得出答案.【详解】解:根据题意,得,且,解得:且,即故选:C.3.(2023下·全国·八年级假期作业)若分式的值为0,则.【答案】2023【解析】略4.(2023上·山东聊城·八年级校考阶段练习)①当时,分式有意义;②当时,分式的值为0.【答案】【分析】本题考查了分式有意义的条件和分式为零的条件,根据分式有意义分母不为零,分式为零分子为零,分母不为零进行求解即可.【详解】解:①分式有意义,,即,②分式的值为0,,得,故答案为:①;②.5.(2023上·吉林四平·八年级统考期末)若分式的值为,则的值是.【答案】1【分析】本题考查的是分式的值为零的条件,熟记分式值为零的条件是分子等于零且分母不等于零是解题的关键.根据分式的值为,分式的分子为,分母不能为即可求解.【详解】解:由题意得:且,解得:且.∴故答案为:.6.(2023上·湖南长沙·八年级校考阶段练习)当x为时,分式的值为0.【答案】【分析】此题考查分式值为零的情况:分子为零,且分母不等于零,据此列得,且,由此求出答案,熟记分式值为零的要求是解题的关键.【详解】解:由题意得,且,解得,故答案为:.7.(2023秋·八年级单元测试)已知分式.(1)若分式无意义,求x;(2)若分式值为0,求x;(3)若分式的值为整数,求整数x的值.【答案】(1)或(2)(3)或4或8【分析】(1)分式无意义,分母值为零,进而可得,再解即可;(2)分式值为零,分子为零,分母不为零,进而可得,且,再解即可;(3)分式值为整数,将分式变形为,再根据数的整除求解.【详解】(1)解:∵分式无意义,∴,解得:或;(2)∵分式值为0,∴,解得:;(3)∵分式的值为整数,∴或5或或,解得:或8或2或,∵且,∴整数x的值为或4或8.【点睛】此题主要考查了分式无意义、分式值为零、分式的值,关键是掌握各种情况下,分式所应具备的条件.【易错二分式混合运算易错】例题:(2024上·陕西延安·八年级统考期末)化简:.【答案】【分析】本题主要考查了分式的混合运算,掌握分式的混合运算法则是解题的关键.根据分式的混合运算法则计算即可.【详解】解:.【变式训练】1.(2024上·上海松江·七年级统考期末)计算:.【答案】【分析】本题考查了分式的混合运算,首先将括号内的式子进行通分,然后将除法转化为乘法,约分化简即可,熟练掌握分式的混合运算法则是解此题的关键.【详解】解:.2.(2023上·陕西西安·九年级校考阶段练习)化简:.【答案】【分析】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序,先乘方,再乘除,最后加减,有括号先算括号里面的,最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式型.先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【详解】.3.(2023上·上海徐汇·八年级上海民办南模中学校考阶段练习)计算:【答案】【分析】此题考查了分式的混合运算,熟练掌握运算的法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】原式4.(2022上·河北唐山·八年级校联考期末)计算:(1);(2).【答案】(1)(2)【分析】本题主要考查了分式的混合运算,掌握分式的运算法则是解决本题的关键.(1)先利用分式的性质把分母化为同分母,再进行同分母的减法运算,即可求解;(2)先算括号里面加减法,再把除法统一成乘法,即可求解.【详解】(1)解:原式;(2)解:原式.5.(2023上·山东东营·八年级校考期中)计算题:(1);(2);(3);(4).【答案】(1)(2)(3)(4)【分析】本题考查分式混合运算,涉及分式加减乘除混合运算、通分、约分等知识,熟练掌握分式混合运算的运算法则是解决问题的关键.(1)先通分,利用同分母的分式加法运算计算,再将除法转化为乘法,因式分解,约分即可得到答案;(2)先通分,利用同分母的分式加法运算计算,再将除法转化为乘法,因式分解,约分,最后通过整式乘法计算即可得到答案;(3)先通分,利用同分母的分式减法运算计算,再将除法转化为乘法,因式分解,约分即可得到答案;(4)先通分,利用同分母的分式减法运算计算,因式分解,再将除法转化为乘法,约分,最后通分、利用同分母的分式减法运算计算后约分即可得到答案.【详解】(1)解:;(2)解:;(3)解:;(4)解:.【易错三自主取值再求值时,忽略分母或除式不能为0】例题:(2023秋·湖南长沙·九年级统考期末)先化简:,然后从、0、2、3中选择一个合适的值代入求值.【答案】;当时,原式【分析】根据分式的加法和除法可以化简题目中的式子,然后在、0、2、3中选择一个使得原分式有意义的值代入化简后的式子即可得到答案.【详解】解:原式,,,∴当时,原式.【点睛】本题考查的是分式的化简求值,解答本题的关键是明确分式化简求值的方法.【变式训练】1.(2023春·八年级课时练习)先化简,再求值:,请在,1,3中选择一个适当的数作为值.【答案】,8【分析】根据分式的除法和减法可以化简题目中的式子,然后从,1,3三个数中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】解:当,3时,原分式无意义,故当时原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.2.(2023·广东汕头·校考模拟预测)先化简代数式,然后在范围选取一个适当的整数作为m的值代入求值.【答案】,当时,原式=1【分析】先将原式化简,然后求出该分式有意义时,m的取值范围即可求出答案.【详解】解:因为分母不为0,所以,因为,m为整数,即当时,原式=.【点睛】本题考查分式的化简运算,解题的关键是正确将分式化简,本题属于基础题型.3.(2023春·八年级课时练习)先化简,再求代数式的值,其中m为满足的整数.【答案】,4【分析】先把除法变成乘法,再计算括号内的,最后约分化简即可,根据分式有意义的条件结合m的取值范围确定出m的值.【详解】解:原式∵有意义,∴,.又∵m为满足的整数,∴∴原式.【点睛】本题考查分式的化简求值,分式的相关运算,以及分式有意义的条件,能够熟练掌握分式有意义的条件是解决本题的关键.4.(2023春·八年级课时练习)先化简,然后在的范围内选择一个合适的整数作为x的值代入求值.【答案】;当时,原式.【分析】根据分式的运算法则化简,x取一个满足条件的值,代入计算即可.【详解】解:;∵且,∴x满足且为整数,若使分式有意义,x只能取0,2.代入求值时,原式;(或时,原式).【点睛】本题主要考查了分式的化简求值、分式有意义的条件,根据分式有意义的条件确定x的值成为解题的关键.5.(2023春·八年级课时练习)先化简,再求值:,其中从,0,1,2中选取一个合适的数作为的值代入求值.【答案】,【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的的值代入计算即可.【详解】解:原式,0,当时,原式.【点睛】本题考查分式化简求值,解题的关键是明确分式加法和除法的运算法则,注意:分式取值一定要使分式有意义.6.(2023·山东枣庄·校考一模)先化简:,再从不等式组的解集中选一个合适的整数x的值代入求值.【答案】;当时,原式=4【分析】先求出不等式组的解集,得到整数解,再对原代数式进行化简,确定合适的x的值代入求解即可.【详解】解:由①得:,由②得:,∴该不等式组的解集为:,∴整数解为,0,1,2,====;∵,∴∴可取,∴原式=,【点睛】本题考查了解一元一次不等式组和分式的化简求值,涉及到了分式的加减乘除混合运算,解题关键是掌握解不等式的方法和分式的运算法则等知识.【易错四解分式方程不验根】例题:(2024上·甘肃武威·八年级校联考期末)解下列分式方程:(1);(2).【答案】(1)无解(2)【分析】本题考查解分式方程.(1)先求出最简公分母去分母,再去括号移项,合并同类项即可得到本题答案;(2)先求出最简公分母去分母,再去括号移项,合并同类项即可得到本题答案.【详解】(1)解:∵,两边同时乘以得:,去括号得:,移项得:,合并同类项得:,即:,检验:把代入,所以不是原方程的解,所以原方程无解;(2)解:,两边同时乘以最简公分母得:,去括号整理得:,即:,移项得:,即:,检验:把代入,所以是方程的解.【变式训练】1.(2023上·山东济南·八年级统考期中)解分式方程:(1)(2)【答案】(1)(2)无解【分析】本题考查解分式方程,按照解分式方程的步骤解方程并检验即可.【详解】(1)解:,,解得:,检验:当时,,是原方程的根;(2),,解得:,检验:当时,,是原方程的增根,原方程无解.2.(2023上·全国·八年级课堂例题)解下列方程:(1);(2).【答案】(1)(2)无解【分析】本题考查了分式方程的解法,注意结果要检验,(1)先去分母,化为整式方程,再求解;(2)先去分母方程两边乘,化为整式方程,再求解,结果要检验.【详解】(1)解:原方程可化为,去分母,得,解得,检验:时,,故是原方程的解;(2)解:原方程可化为,去分母方程两边乘,得,去括号,得解得检验:时,,故原方程无解.3.(2023上·江苏南京·八年级南京大学附属中学校考期末)解下列分式方程:(1);(2)【答案】(1)(2)原分式方程无解【分析】此题考查了解分式方程,(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解析:方程两边都乘,得,去括号得:移项合并同类项得:解得,经检验,是分式方程的解,(2)解:去分母,得,去括号得:移项合并同类项得:,经检验,是分式方程的增根,∴原分式方程无解.4.(2023上·山东泰安·八年级统考期中)解方程:(1);(2).【答案】(1)(2)无解【分析】本题考查了解分式方程:(1)利用解分式方程的一般步骤即可求解;(2)利用解分式方程的一般步骤即可求解;熟练掌握解分式方程的一般步骤是解题的关键.【详解】(1)解:,两边同时乘,得:,解得,经检验,是原方程的根,∴原方程的解为.(2)两边同时乘得,,移项合并得:,解得:,经检验是原方程的增根,原方程无解.5.(2024上·辽宁铁岭·八年级校考期末)解方程(1)(2)(3)【答案】(1);(2);(3)原分式方程无解.【分析】()按照解分式方程的一般步骤解答即可求解;()按照解分式方程的一般步骤解答即可求解;()按照解分式方程的一般步骤解答即可求解;本题考查了解分式方程,掌握解分式方程的一般步骤是解题的关键.【详解】(1)解:方程可变为,,方程两边同时乘以得,,解得,检验:把代入得,,∴是原分式方程的解;(2)解:方程两边同时乘以得,,整理得,,解得,检验:把代入得,,∴是原分式方程的解;(3)解:方程变形为,,方程两边同时乘以得,,解得,检验:把代入得,,∴是原分式方程的增根,∴原分式方程无解.【易错五分式方程无解与增根混淆不清】例题:(2023秋·山西朔州·八年级统考期末)若关于的分式方程无解,则(

)A. B.0 C.1 D.【答案】A【分析】解分式方程,可得,根据题意可知分式方程的增根为,即有,求解即可获得答案.【详解】解:,去分母,得,合并同类项、系数化为1,得,由题意可知,分式方程的增根为,即有,解得.故选:A.【点睛】本题主要考查了解分式方程以及分式方程的增根的知识,通过分析确定该分式方程的增根为是解题关键.【变式训练】1.(2023春·八年级课时练习)已知关于的方程有增根,则的值是(

)A.4 B. C.2 D.【答案】D【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到x−4=0,据此求出x的值,代入整式方程求出m的值即可.【详解】解:原方程去分母,得:,∴,由分式方程有增根,得到x−4=0,即x=4,把x=4代入整式方程,可得:m=-2.故选D.【点睛】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.2.(2023·山东菏泽·校考一模)已知关于的分式方程无解,则的值为_____.【答案】或【分析】根据分式方程的解法步骤,结合分式方程无解的情况即可得到参数的值.【详解】解:,去分母得,,关于的分式方程无解,①当时,即,此时无解;②当时,即,解得,此时分式方程无解,必须有或,则或,当时,方程无解;当时,解得;综上所述,的值为或,故答案为:或.【点睛】本题考查解分式方程及由分式方程无解求参数问题,熟练掌握分式方程的解法步骤以及无解情况的分类讨论是解决问题的关键.3.(2022秋·湖北武汉·八年级校考期末)若关于x的方程无解,则a的值为______.【答案】或或【分析】分增根无解和化简后的一元一次方程无解两种情况计算即可.【详解】∵,∴,整理,得,当时,方程无解,解得;∵的增根为,∴,解得,故答案为:.【点睛】本题考查了分式方程的无解问题,熟练掌握分式方程无解的分类计算方法是解题的关键.4.(2023春·八年级单元测试)已知关于x的分式方程.(1)当时,求这个分式方程的解.(2)小明认为当时,原分式方程无解,你认为小明的结论正确吗?请判断并说明理由.【答案】(1);(2)小明的结论正确,理由见解析.【分析】(1)按照解分式方程的步骤求解即可;(2)按照解分式方程的步骤求解即可.【详解】(1)解:去分母,得,当时,得,解得,经检验,是原方程的根;(2)解:小明的结论正确,理由如下:去分母,得,当时,,解得,经检验,是原方程的增根,原方程无解,∴小明的结论正确.【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解步骤与方法.5.(2023·全国·九年级专题练习)已知关于x的分式方程.(1)若方程的增根为x=2,求a的值;(2)若方程有增根,求a的值;(3)若方程无解,求a的值.【答案】(1)-2;(2)-2;(3)3或-2【详解】试题分析:(1)原方程化为整式方程,求解出增根,然后代入求解即可;(2)由增根求出x的值,然后代入化成的整式方程即可;(3)方程无解,可分为有增根和化成的整式方程无解两种情况求解即可.试题解析:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点睛:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.【易错六已知方程的根的情况求参数的取值范围,应舍去分母为0时参数的值】例题:(2023上·内蒙古乌兰察布·八年级校联考期末)若关于x的分式方程的解为正数,则k的取值范固是.【答案】且【分析】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.根据题意,将分式方程的解用含的表达式进行表示,进而令,再因分式方程要有意义则,进而计算出的取值范围即可.【详解】解:方程两边同时乘以,根据题意且∴∴∴k的取值范围是且.故答案为:且.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论