版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
SF
solutionsforourclimate
SolutionsforOurClimate(SFOC)isanonprofitorganizationdedicatedtoreducingglobalGHGemissionsandpromotingenergytransition.SFOCisseekingeffectivesolutionstotackletheclimatecrisisthroughvariousmeans,includingresearch,legislation,internationalcooperation,communication,andinitiatingfundamentalchanges.
PublishedSeptember2024
AuthorsJintaeKimlSNUGSESPh.DStudent
SoonyoungKimlSNUGSESPh.DStudent
GeunhaKim|SFOC|geunha.kim@
DesignYeonhuiSeo|SFOC
NatureRhythm
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
TableofContents
Ⅰ.Introduction
4
1.GHGReductionDiscussionsinShipping
4
2.ObjectivesofResearch
5
Ⅱ.ResearchMethodology
6
1.MESSAGEix-KshipModel
6
2.Data
8
3.GHGEmissionsReductionScenarios
13
Ⅲ.AnalysisResults
15
1.TotalSystemCostsandGHGEmissionVolumes
15
2.FuelConsumptionandComposition
17
3.FuelSupply
18
4.VesselAgeCompositionAcrossScenarios
19
5.NewVesselIntroductionScalesAcrossVesselTypes
20
6.InvestmentinNewVessels
21
Ⅳ.Conclusion
23
Appendix
26
References29
4
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
Ⅰ.Introduction
1.GHGReductionDiscussionsinShipping
Morethan90percentofinternationaltradeisseaborne.ThisfigureisevenhigherforSouthKorea.Astunning99.7percentofitsinternationaltradereliesonmaritimetransport.1ShippingisapivotalindustryforglobaltradeandisparticularlysignificantforacountrylikeSouthKoreathatisheavilydependentonexports.
TheInternationalMaritimeOrganization(IMO)isadoptingincreasinglystringentstrategiestoreducegreenhousegas(GHG)emissionsfromshipping.InJuly2023,theIMOrampedupitsgoalfromhalvingGHGemissionsby2050,comparedto2008levels,toachievingnet-zeroGHGemissionsby2050.2Furthermore,thisglobalmaritimeregulatorplanstoadoptamarinefuelstandardasatechnicalelementandaGHGemissionspricingmechanismasaneconomicelementin2025,withtheirenforcementslatedfor2027.
Besides,startingonJanuary1,2024,theEuropeanUnion(EU)expandeditsemissionstradingsystem(ETS)tocoverthemaritimesector.Shipsof5,000grosstonnage(GT)andabovecallingatportswithintheEuropeanEconomicArea(EEA)arerequiredtopurchaseEUAllowances(EUA)fortheirGHGemissionsinaccordancewiththeEUMonitoring,Reporting,andVerification(EUMRV)MaritimeRegulationandsubmitthemtotheirrespectiveadministeringauthorities.Non-compliancemayresultinpecuniarypenaltiesandthedenialofentrytoportswithintheEEAterritories.3
StricterregulationofGHGemissionsfromshippingisbeingpursuednotonlybytheIMObutalsobyindividualcountriesandregions.Giventhat99.7percentofSouthKorea’simportsandexportsaretransportedbysea,asnotedearlier,thecountryisnaturallysusceptibletoregulatorychangesintheinternationalshippinglandscape.InFebruary2023,theMinistryofOceansandFisheries(MOF)announcedanet-zerostrategythatseekstoreduceGHGemissions60percentby2030,80percentby2040,and100percentby2050,allcomparedwith2008levels.ThisambitiousstrategyissupplementedbyactionplansthatareannuallyreleasedaimedatpromotingthedevelopmentandadoptionofKorean-stylegreenships(K-ships),whichleverageSouthKorea’sadvancedmaritimetechnologiesandstrengthsandcatertothecountry’sspecificneeds.Tomaintainitsleadershipinshippingandrelatedindustries,thismaritimepowerhousemustformulateandimplementproactiveandpreemptivepoliciesalignedwithinternationalshippingregulationsandmarketconditions.
1PWCKorea(2023).“InsightsintotheFutureofShippingbySouthKorea,aNewMaritimePowerhouse“p.4,p.6.
2AimstoreduceannualGHGemissionsfromshipping20-30percentby2030,70-80percentby2040,and100percentby2050,comparedto2008levels.
3KoreanRegister(2024).“InitialimplementationguidelinesfollowingtheintroductionofEUETSinthemaritimesector“.
5
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
2.ObjectivesofResearch
Today,environmentalregulationsareprogressivelymorphingintoeconomicconstraints,therebycreatingnewtradebarriers.Amidstthistransformativeperiod,thecallfordecarbonizationhasreachedunprecedentedheights.Particularlyforexport-andimport-driveneconomieslikeSouthKorea,decarbonizationisofparamountimportancetoremaingloballycompetitive.Thisendeavorrequiresaprofoundunderstandingoftheswiftlyevolvingenvironmentalregulationsonboththedomesticandinternationalfronts,apreciseassessmentofthecurrentstateofthecountry’smaritimeindustry,anddeepinsightsintofuelusepathways.Todrawtheseunderstandingsandinsights,thisstudyemploysbottom-upenergysystemmodelingtoscrutinizeSouthKorea’spresentmaritimedecarbonizationstrategiesandassesstheirfeasibility,alongwiththecountry’smaritimecarbonreductiongoals.Thisstudyalsointendstoextracttechnologicalandpolicyimplicationsnecessaryforadecarbonizedfuture.
ThisstudydistinguishesitselffrompriorstudiesonglobalmaritimeshippingbyfocusingonSouthKorea’soceangoingmerchantfleetandderivinginsightsspecifictothecountry’sshippingdecarbonizationstrategies.Moreover,emissionsareestimatedbyabottom-upmodeldevisedspecificallyfortheSouthKoreanshippingsector,basedonactualdatafromindividualshipscategorizedbyvesseltype,leadingtogreateranalyticalprecision.Inaddition,advancementsinshiptechnologyandapplicablealternativeenergysourcesareconsideredfordifferenttypesofships,enhancingthegranularityoftheresearch.Thestudyalsoaccountsforallforeseeablefutureenergysources—includingLNG,methanol,andammonia—andtheirproductionmethods,therebyaddingsignificantdepthtotheanalysis.
6
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
Ⅱ.ResearchMethodology
1.MESSAGEix-KshipModel
TheMESSAGE(ModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact)frameworkisanadvancedmathematicaltoolengineeredtoguidethedevelopmentofenergyandenvironmentalplansandpolicies.Thiscomprehensivemodelingframeworkcoverstheentirecontinuumofenergysupplyandconsumption.MESSAGEmodelmayhelpformulateandanalyzeplansonhowenergyshouldbeproducedandconsumedforandbytheSouthKoreanmaritimesector.Employingabottom-upapproach,MESSAGEtracksenergyproductionandconsumption.Inthelanguageoftechnologicalunits,itdescribesparticularjourneysofenergy,startingwithitsextractionandimportation—wheretheenergyoriginates(e.g.,crudeoil,naturalgas,renewablesources),whatformsofsecondaryenergyitisconvertedinto(e.g.,electricity,petroleumproducts),andhowitisultimatelyconsumed(e.g.,heating,transportation,lighting).Thissequentialrepresentationaidsinunderstandingtheinterconnectionsamongvariousenergyresourcesandtechnologies.Italsoenablesnumericalanalysesofthelong-termeconomicandenvironmentalramificationsofpolicychoicesmadeatspecificpointsintime.
OneofthekeyfeaturesofMESSAGEisitsuseofdynamiclinearprogramming(DLP).Thismethodologypinpointsthemostcost-effectivestrategiesbyaccountingforhowvariousconstraintsevolveovertime.Forinstance,aMESSAGEmodelcanhelpdeterminewhenandwhichnewtechnologiestoimplementtoreducefuturecarbonemissions.Recently,amoreadvancedversionnamedMESSAGEixwasreleased.Thisupdatedversionallowsuserstomanageinputdata,equations,andoutputsmoreeasily,effectively,andtransparently.
Inthisstudy,wehavebuilttheMESSAGEix-Kshipmodel,asdepictedinTable1.Itisdesignedtoanalyzetheoperational-phaseenergyconsumptionofSouthKorea’soceangoingfleetand,withlongertimehorizons,determinetheappropriatetimingandscalefordeployinglow-carbonandzero-carbonshipsinalignmentwithclimatepolicies.
[Table1]AnOverviewoftheMESSAGEix-KshipModel
ModelType
Anenergysystemmodel(technology-basedbottom-upapproach)
GeographicalScope
Operational-phaseenergyconsumptionofSouthKorea’soceangoingnationalfleet
AnalyticalConcept
Partialequilibriumanalysisonhowtomeetexogenousdemandforcargotransportatminimalcost
ModelingPeriod
Historicalreferenceyear:2008
Baseyear:2022
Projectionperiods:2025,2030,…,2070(5-yeartimeslices)
AnalyticalMethod
Costminimizationanalysiswithintertemporalchoicesavailable
Scenarios
Climatepolicy–impositionofannualcarbonemissionconstraints
7
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
Thereferenceenergysystemofanenergysystemmodelencompassesalltheenergytechnologies,commodities,levels,anddemandthatthemodelconsiders.Figure1showsthereferenceenergysystemfortheMESSAGEix-Kshipmodel,whichistheenergysystemmodelforthisstudy.Itfeaturestechnologiesforsixtypesoffuels—heavyfueloil(HFO),naturalgas,biofuels,methanol,ammonia,andhydrogen—thatareusedtodelivercargotransportservices(usefulenergyservices)acrosstentypesofships.Owingtospatialconstraints,thesixfueltechnologiesarespelledoutonlyforbulkcarriers,whilefortheothertypesofships,theyaresimplynumericallyindicated.LNGandLPGships,whichtransportliquefiednaturalgas(LNG)andliquefiedpetroleumgas(LPG),respectively,areassumedtouseonlytraditionalfuels(HFOandLNG),guidedbytechnological,economic,andsafetystandardsandregulations.Thesystemalsoincorporatesagranularclassificationoffuels—gray,blue,andgreen—dependingontheproductionmethodinitsdepictionoffinalenergysupplytovessels.(seeAppendixTable1)
[Figure1]EnergySystemfortheMESSAGEix-KshipModel
TheMESSAGEix-KshipenergysystemmodelfocusesonanalyzingenergyconsumptionandGHGemissionsduringshipoperations,deliberatelyexcludingfuelconsumptionbyauxiliaryenginesandemissionsfromnon-operationalphasessuchasdockingandmooring.ToensurereliableandmeaningfuloutcomesforSouthKorea’sinternationalmaritimesector,whichemploystheMESSAGEix-Kshipmodel,fuelsupplyisbrieflyoutlinedoverthetimehorizonofthisstudy.
8
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
2.Data
DataMatchingResults
TogatherfoundationaldataforSouthKorea’soceangoingfleet,whichformstheintendedscopeofthisstudy,weusedthe2023ShippingStatisticsfromtheKoreaShipowners’AssociationandtheWorldFleetRegisterfromClarksonsResearch(ClarksonsWFR).Giventhedifferingclassificationsystemsofthesetwosources,amorenuancedclassificationframeworkisdevelopedtoensuredataharmonization.Thisdatamatchingoperationleadstotheselectionof898SouthKoreanflaggedoceangoingvessels,eachwithatleast5,000GT.ThisselectioncloselyalignswiththescopeofvesselscoveredbytheMOFdecarbonizationstrategy,whichindicatesthatourmatchingresultsaccuratelymirrorthecompositionofthenationalfleet.
AlookattheoverallfleetcompositionrevealsavarieddistributionofshiptypesandageswithinSouthKorea’snationalfleet.Bulkcarriersformthelargestsegment,followedbycontainershipsandchemicaltankers.Thereisamarkedvarianceintheagedistributionacrossdifferentshiptypes.Notably,theproportionofshipsbuiltbefore2006,whicharenearingtheirreplacement,ishigheramongcontainershipsandchemicaltankersthanamongtherestofthefleet.Chemicaltankers,LNGcarriers,generalcargoships(breakbulkcarriers),andrefrigeratedcargoshipsshowpronouncedagedifferenceswithinthesameshipcategories.Thevariedcross-categoryproportionsandtheintra-categoryagedisparitiesunderscoretheneedtoconsiderthereplacementcyclesandmethodsforindividualships.
[Figure2]CumulativeAgeDistributionofDifferentShipTypes
Unit:perVessel
2017andbeyond
2012-2016
2007-2011
2006andbefore
9
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
VesselData
Annualtotaloperatingdistancesandcarbondioxide(CO2)emissionsacrossvariousshiptypescanbeconfirmedusingshipdata.Bulkcarriers,whichconstitutethelargestfleet,coverthegreatestannualdistances,followedbycontainershipsandpurecarcarriers(PCC).Whilecarbondioxideemissionpatternsgenerallycorrespondtosailingdistances,containershipsandtankers—crudeoiltankers,LNGtankers,chemicaltankers,producttankers—emitsignificantlymorecarbondioxideemissionsrelativetotheirseamiles.Thishighlightsthatwhiletraveldistanceisamajorfactorincarbondioxideemissions,thetypeofshipalsomakesadifference.
[Figure3]AnnualOperatingDistancesandCO2EmissionEstimatesAcrossShipTypes
EstimatedCO2AnnualTonnes(Unit:천tCO2)
AnnualDistanceTravelled(Unit:Gm)
InvestmentandFixedCosts(CostStructureConsiderations)
MESSAGE(ix),abottom-upenergysystemframework,makesdecisionsbasedoncostanalytics.Thisstudydelineatesthreeprimarycostcategories:investmentcosts,operatingandmaintenanceexpenses(orsimplyoperatingexpenses),andvariablecosts.InvestmentcostsareinformedbytheClarksonsnewbuildingpriceindex.Foroperatingexpenses(OPEX),the2022averageexpensesbyshiptypefoundinShipOperatingCostsAnnualReviewandForecast(Drewry,2023)areused.Variablecostsincludefuelcostsandnon-fuelancillarycostssuchasportandcargocharges.Fuelcostsarecalculatedbymultiplyingtraveldistanceswiththerespectivefuelcoefficients,whilenon-fuelcostestimatesarepeggedat20percentofthefuelcosts,basedonpriorresearch(Guetal.,2022).
10
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
CargoVolumeProjections
Ourmodel’sreferenceyearcargovolumeisestimatedbymultiplyingthe2022deadweighttonnes(DWT)ofeachshiptypebytherespectiveoperatingdistancebasedontheClarksonsWFR.Futuredemandforcargotransportupto2050isthenprojectedusingcargotype-specificportthroughputforecastsbytheKoreaMaritimeInstitute(KMI).Figure4illustratesthecargovolumeprojectionsusedintheMESSAGEix-Kshipmodel.Thedataindicatesdominantproportionsofbulkcarriers,containerships,andcrudeoiltankers,withthecontainercargovolumegrowingatafasterratethantheothershiptypes.
[Figure4]MESSAGEix-KshipCargoVolumeProjections
CharacteristicsandPriceOutlookforMarineFuels
TheadvantagesanddisadvantagesofthemarinefuelsconsideredinthisstudyaresummarizedinTable2.LNG,notedforitslowcarbondioxideemissionsandtechnicalreliabilityduringoperation,faceschallengessuchasmethaneslipandpricevolatility.DisparitiesinLNGbunkeringinfrastructureacrossregionsalsoremainadrawback.LPGemitslesscarbondioxideandcanbeusedtofuelitscarriers,buthasrestricteduseforothervessels.Methanol,whileeasytohandleandcompatiblewithexistinginfrastructure,suffersfromlowenergydensityandhighretrofittingcosts.Biofuelscanbeeasilyintegratedintoexistingfacilitieswithsimpleretrofittingefforts,buttheirproductionemitscarbondioxide.Hydrogenandammoniaarecarbon-freeandthereforeholdpromise,buthighcosts,formidabletechnologicalchallenges,andadearthofinfrastructureremaintoweringobstacles.
11
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
[Table2]SummaryTableofCharacterizationofMarineFuels
Fuel
Pros
Cons
LNG
•Highstabilityinuseandwell-establishedreliabletechnology
•Constructionofbunkeringinfrastructureinprogress
•Fugitivemethaneemissionsandmethaneslip;fossilfuel-based
•Inter-regioninfrastructuredisparities
•Pricevolatility
LPG
•Canbeusedasfuelduringtransitascargo
•LimitedusesoutsideLPGcarriers
•Fossilfuel-based
•Price-drivenincentives
Methanol
•EasyhandlingrelativetoLNG
•FewerGHGemissions
•Useofexistinginfrastructure
•Complexityofretrofittingandlowenergydensity
•Highshort-termcosts
•Productionlimitations
Biofuels
•Useofexistingfacilities
•Usableaftersimpleretrofitting
•Environmentalrisksfromfuelproduction,e.g.,
significantcarbonemissionsandlanduseimpact
Hydrogen
•Zeroemissionsofpollutantsandabundantavailability
•Heavytechnologyinvestment
•Efficientfuelcells
•Energy-intensiveproductionprocess
•Lackoflarge-scalebunkeringinfrastructure
•Enormousstoragecosts(-253°C)
Ammonia
•Activeproductionandtrade
•Zero-carbonfuel(greenammonia)
•Energy-intensive
•LowenergydensityrelativetoHFO
•Toxicandcorrosive
•NOxemissions
Source:Clarksons.AlternativeFuelsandESTs
FuelcostsareestimatedusingforecastsfromtheMærskMc-KinneyMøllerCenterforZeroCarbonShippingandtheInternationalEnergyAgency(IEA,2021).Figure5showcasesthefuelpriceprojectionsusedintheMESSAGEix-Kshipmodel.Acomparisonbetweenthe2025and2050fuelpriceestimatesrevealsthattechnologicaladvancementsareexpectedtopulldownthecostsofnaturalgas,hydrogen,andmethanolfuels.Despitethesetechnologicalstrides,therankingorderofcost-effectivegreenfuelsremainsunchanged:greenhydrogenatthefront,followedbygreenammoniaandgreenmethanol.Particularly,therelativelymodestdeclineinthepriceofgreenmethanolcanbeattributedtoitsrelianceongreenhydrogenasaprimaryfeedstock.
12
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
[Figure5]FuelCostsProjectionsfor2025and2050
HistoricalGHGEmissions
ThisstudyuseshistoricalvolumesofGHGemissionsaskeyinputstogeneratescenario-specificemissionconstraints.TheMinistryofOceansandFisheriesreportsthatin2008,SouthKorea’semissionsfromshippingtotaled28MtCO2eq.Furthermore,2023UNCTADdataindicatesthatemissionslinkedtoSouthKoreashipownershipstoodat24MtCO2eqin2012,risingtoroughly28MtCO2eqby2022.
DetaileddataontheSouthKoreaninternationalshippingsector’senergyconsumptionandGHGemissionsduringtheoperationalphaseisfarfromreadilyavailable.Thisstudycircumventsthisdifficultybyfirstlyidentifyingafleetof898SouthKorean-flaggedocean-goingmerchantvessels,basedontheClarksonsWFR.Itthenreverse-calculatestheirfuelconsumptioninnetcalorificvaluesonthebasisoftheircarbondioxideemissions.Finally,thestudymultipliesthefuelconsumptionestimatesbytheemissionfactors(EF)forcarbondioxide(CO2),methane(CH4),andnitrousoxide(N2O)andtheirrespectiveglobalwarmingpotentials(GWP)toobtainthetotalandsegment-specificemissionsincarbondioxideequivalentterms.Thesefindings,segmentedbyvesseltypeandGHGcategory,arepresentedinTable3.
13
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
[Table3]2022GHGEmissionsbyVesselTypeandbyGHG
GHG
VesselType
CO2(tCO2eq)
CH4(tCO2eq)
N2O(tCO2eq)
LNGship
3,281,630
173,225
47,239
Container
6,410,116
2,985
98,560
Crude
2,945,376
31,180
44,728
Bulk
6,719,395
3,129
103,316
PCC
1,993,898
928
30,658
LPGship
773,441
360
11,892
GeneralCargo
369,344
172
5,679
Reefer
192,641
90
2,962
ChemicalTanker
1,932,872
900
29,719
ProductTanker
1,394,571
649
21,443
Total
26,013,285
213,618
396,196
3.GHGEmissionsReductionScenarios
ThisstudyconstructsGHGemissionsreductionscenariosinreferencetothetargetsestablishedbytheIMOandtheSouthKoreanMinistryofOceansandFisheries(MOF).Specifically,thescenariosemployfiguresfromtheIMOandMOFfortheirreductiontargets,whiletheirassumptionsonefficiencyimprovementsareinformedbytheannualpaceofcarbonintensityreductionpresentedinTheFourthIMOGreenhouseGasStudy(2020),whichrangesfrom1to2percentperyear.
[Table4]OverviewofGHGEmissionsReductionScenarios
Scenarios
Efficiency
Improvement4
ReductionTargets
(percentagereduction)
Remarks
Baseline(BAU)
1%
(everyyear)
Noreduction
Animaginaryfuturewithoutanyclimatepolicyintervention
IMO_Net50
1%
(everyyear)
50%by2050relativeto2008
InitialIMOStrategyadoptedbyMEPC72in2018
(72ndsessionoftheMarineEnvironmentProtectionCommittee)
IMO_Net0
2%
(everyyear)
30%by2030relativeto200880%by2040relativeto2008100%by2050relativeto2008
RevisedIMOGHGStrategyadoptedbyMEPC80in2023
MOF_Net0
2%
(everyyear)
60%by2030relativeto200880%by2040relativeto2008100%by2050relativeto2008
MOF’s2023strategyfordecarbonizationofinternationalshipping
4ThisstudydoesnotregardtherepairandretrofittingofoutmodedshipsastechnologiestodirectlyreduceGHGemissionsbutasmeansofefficiencyimprovement.
14
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
[Figure6]Scenario-SpecificGHGEmissionsReductionPathways
30%reductionfrom2008
60%reductionfrom2008
80%reductionfrom2008
Figure6succinctlyillustratestheGHGemissionconstraintsfortheindividualscenarios.Baselineemissionsin2008areassumedat28.8MtCO2eq,andthereductiontargetsbetweenthekeyyearsarepresumedtofollowlineartrajectories.Althoughthe2018IMOstrategy,whichaimedfora50-percentreductionby2050relativeto2008,hasbeensupersededbythe2023IMOnet-zerostrategy,thisstudystillexaminesitasaseparatescenario(ScenarioIMO_Net50).Theinclusionofthisscenarioaimstoanalyzeitsfuelcompositionandrelativelylenienttargetsincontrasttothoseofthemorestringentnet-zeroscenarios.ScenarioIMO_Net0andScenarioMOF_Net0represent,respectively,the2023IMOGHGemissionsreductionstrategyandthe2023MOFinternationalshippingdecarbonizationstrategy.Theseambitiousstrategiessharethesameultimategoalofnetzeroby2050butdivergeintheirpathwaysuntil2040.TheMOFstrategyprojectsafasterreductionduringthe2030-2040period(thedifferentialisestimatedat64.35MtCO2eq,asdepictedbythetriangularareainthegraph).
15
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
Ⅲ.AnalysisResults
1.TotalSystemCostsandGHGEmissionVolumes
Inthisstudy,totalsystemcostsrepresentthecumulativeexpensesoverthe2026-2050periodascalculatedbytheMESSAGEix-Kshipmodel,whichencompassesinvestments,operatingexpenses(OPEX),fuelcosts,andfixedcosts.Forthebaselinescenario(ScenarioBAU),thetotalsystemcostisprojectedatapproximatelyUSD163billion.InScenarioIMO_Net50,thecostincreasestoUSD173billion,andunderScenarioIMO_Net0,itrisesfurthertoUSD193billion.Theserisesincostsmirrortheescalatingrigoroftheirrespectivereductiontargets.
ThetotalsystemcostculminatesatUSD198billionunderScenarioMOF_Net0,drivenbyitsambitiousintermediatetargetofa60-percentcutby2030.Forcontext,ScenarioIMO_Net0aimsfora30-percentcutby2030,withbothIMO_Net0andMOF_Net0targetingan80-percentcurtailmentby2040.ThisstudyassumesthatunderbothScenariosIMO_Net0andMOF_Net0,carboncanbecapturedthroughdirectaircapture(DAC)technologyatacostofUSD1,000pertonne,aidingtheirjourneytowardszeroemissionsby2050.ThisassumptionabouttheuseofDACtechnologyresultsinanadditionalestimatedexpenditureofapproximatelyUSD10billion.
[Figure7]TotalSystemCostsbyScenario
CostsexceptforDACDACCosts
16
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
RegardingGHGemissions,thebaselinescenario(ScenarioBAU)startsat26.31MtCO2eqin2022,withemissionsincreasingprogressivelyto29.96MtCO2eqby2050.ScenarioIMO_Net50seesadecreaseinemissionsstartingin2025toreach14.30MtCO2eq,halfthe2008level,by2050.ThemoreambitiousIMOscenario(IMO_Net0)projectsemissionsat20.02MtCO2eqby2030,withagoalofachievingcarbonneutralityby2050.ScenarioMOF_Net0sharesthesame2050goalwithitsIMOnet-zerocounterpart,butfollowsamoredrasticreductionpath,droppingemissionsto11.44MtCO2eqby2030andreachingnetzeroby2050.(seeFigure6)
ThevolumesofGHGcaptureacrossthethreescenarioswithpolicyinterventionareillustratedinFigure8.ScenarioIMO_Net50leadsincarboncapture,withrecordsof2.07MtCO2eqin2040and5.43MtCO2eqin2050.Thisscenarioleveragesship-basedcarboncaptureandstorage(SCCS)technologyaboardvesselsfueledbyHFOorLNG,insteadofDACtechnology.Incontrast,ScenariosIMO_Net0andMOF_Net0,drivenbytheswiftexpansionofecofriendlyfleets,capturefewerGHGs.Specifically,ScenarioIMO_Net0captures0.40MtCO2eqin2040and2.82MtCO2eqin2050,andScenarioMOF_Net0sequestrates0.4MtCO2eqin2040and2.74MtCO2eqin2050.
[Figure8]GHGEmissionsandCapturesbyScenario
Figure9showcasesthevesseltype-specificemissionvolumesacrossthefourscenarios.BulkcarriersemitthemostGHGs,followedbycontainerships,crudeoiltankers,LNGtankers,chemicaltankers,productcarriers,andpurecarcarriers(PCCs).Theyear2050seesonlytwotypesofvesselsemitGHGsundertheIMO_Net0andMOF_Net0scenarios:LNGandLPGcarriers.Thisisbecausethesetwocategoriesofshipsareassumedtouseonlyconventionalfuels(HFOandnaturalgas)inconsiderationoftechnological,economic,andsafetyregulations.
17
AStudyonSouthKorea’s2050NetZeroPathwayforShipping
[Figure9]VesselType-SpecificGHGEmissionVolumesAcrossScenarios
2.FuelConsumptionandComposition
ThefinalenergyconsumptionbyenergysourceinSouthKorea’sinternationalshippingsectoracrossthefourscenariosareillustratedfordifferenttimeslicesinFigure10.Underthebusinessasusual(BAU)scenario,heavyfueloil(HFO)andLNGremain,albeitwithcontrastingtrends:HFOusegraduallydeclinesto7,546ktoein2050whileLNGconsumptionprogressivelyrisesovertimeandhits1,888ktoein2050.TheIMO_Net50scenariofeaturesadrasticdropinHFOconsumption,alongsideuptakesinLNG,methanol,ammonia,andbiofuels.By2050,HFOusagesharplyfallsto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于二零二四年度政策环境的业务发展战略规划合同
- 门窗分包工程2024年度合同协议
- 2024年度建筑劳务分包工程验收合同2篇
- 分期购买手机合同完整版
- 商务咨询合同范本 2篇
- 2024年度健身服务合同:健身俱乐部与会员之间的健身服务协议2篇
- 2024年度珠宝首饰设计及定制合同3篇
- 芒果购销合同2024年度全文预览:果品批销合同
- 厨房承包合同协议书
- 河沙材料采购合同
- 2024-2030年中国蓝宝石基片行业供需趋势及发展风险研究报告
- 基于核心素养长链条培养的小学科学与初中物理的衔接研究
- 能源管理的成本效益分析
- 《新媒体视角下古镇旅游营销策略探究:以苏州同里古镇为例》开题报告4100字
- 混凝土实习报告(15篇)
- 2025年健康素养知识竞赛题库(含答案)
- 七年级数学期中模拟卷【测试范围:七上第1-3章】(冀教版2024)
- GB/T 44589-2024机器人自适应能力技术要求
- 廉洁纪律十道题
- 人教版九年级上册数学第二次月考试卷含答案
- 混凝土采购运输组织供应、运输、售后服务方案
评论
0/150
提交评论