韩国2050年航运净零排放路径研究(英文版)_第1页
韩国2050年航运净零排放路径研究(英文版)_第2页
韩国2050年航运净零排放路径研究(英文版)_第3页
韩国2050年航运净零排放路径研究(英文版)_第4页
韩国2050年航运净零排放路径研究(英文版)_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

SF

solutionsforourclimate

SolutionsforOurClimate(SFOC)isanonprofitorganizationdedicatedtoreducingglobalGHGemissionsandpromotingenergytransition.SFOCisseekingeffectivesolutionstotackletheclimatecrisisthroughvariousmeans,includingresearch,legislation,internationalcooperation,communication,andinitiatingfundamentalchanges.

PublishedSeptember2024

AuthorsJintaeKimlSNUGSESPh.DStudent

SoonyoungKimlSNUGSESPh.DStudent

GeunhaKim|SFOC|geunha.kim@

DesignYeonhuiSeo|SFOC

NatureRhythm

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

TableofContents

Ⅰ.Introduction

4

1.GHGReductionDiscussionsinShipping

4

2.ObjectivesofResearch

5

Ⅱ.ResearchMethodology

6

1.MESSAGEix-KshipModel

6

2.Data

8

3.GHGEmissionsReductionScenarios

13

Ⅲ.AnalysisResults

15

1.TotalSystemCostsandGHGEmissionVolumes

15

2.FuelConsumptionandComposition

17

3.FuelSupply

18

4.VesselAgeCompositionAcrossScenarios

19

5.NewVesselIntroductionScalesAcrossVesselTypes

20

6.InvestmentinNewVessels

21

Ⅳ.Conclusion

23

Appendix

26

References29

4

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

Ⅰ.Introduction

1.GHGReductionDiscussionsinShipping

Morethan90percentofinternationaltradeisseaborne.ThisfigureisevenhigherforSouthKorea.Astunning99.7percentofitsinternationaltradereliesonmaritimetransport.1ShippingisapivotalindustryforglobaltradeandisparticularlysignificantforacountrylikeSouthKoreathatisheavilydependentonexports.

TheInternationalMaritimeOrganization(IMO)isadoptingincreasinglystringentstrategiestoreducegreenhousegas(GHG)emissionsfromshipping.InJuly2023,theIMOrampedupitsgoalfromhalvingGHGemissionsby2050,comparedto2008levels,toachievingnet-zeroGHGemissionsby2050.2Furthermore,thisglobalmaritimeregulatorplanstoadoptamarinefuelstandardasatechnicalelementandaGHGemissionspricingmechanismasaneconomicelementin2025,withtheirenforcementslatedfor2027.

Besides,startingonJanuary1,2024,theEuropeanUnion(EU)expandeditsemissionstradingsystem(ETS)tocoverthemaritimesector.Shipsof5,000grosstonnage(GT)andabovecallingatportswithintheEuropeanEconomicArea(EEA)arerequiredtopurchaseEUAllowances(EUA)fortheirGHGemissionsinaccordancewiththeEUMonitoring,Reporting,andVerification(EUMRV)MaritimeRegulationandsubmitthemtotheirrespectiveadministeringauthorities.Non-compliancemayresultinpecuniarypenaltiesandthedenialofentrytoportswithintheEEAterritories.3

StricterregulationofGHGemissionsfromshippingisbeingpursuednotonlybytheIMObutalsobyindividualcountriesandregions.Giventhat99.7percentofSouthKorea’simportsandexportsaretransportedbysea,asnotedearlier,thecountryisnaturallysusceptibletoregulatorychangesintheinternationalshippinglandscape.InFebruary2023,theMinistryofOceansandFisheries(MOF)announcedanet-zerostrategythatseekstoreduceGHGemissions60percentby2030,80percentby2040,and100percentby2050,allcomparedwith2008levels.ThisambitiousstrategyissupplementedbyactionplansthatareannuallyreleasedaimedatpromotingthedevelopmentandadoptionofKorean-stylegreenships(K-ships),whichleverageSouthKorea’sadvancedmaritimetechnologiesandstrengthsandcatertothecountry’sspecificneeds.Tomaintainitsleadershipinshippingandrelatedindustries,thismaritimepowerhousemustformulateandimplementproactiveandpreemptivepoliciesalignedwithinternationalshippingregulationsandmarketconditions.

1PWCKorea(2023).“InsightsintotheFutureofShippingbySouthKorea,aNewMaritimePowerhouse“p.4,p.6.

2AimstoreduceannualGHGemissionsfromshipping20-30percentby2030,70-80percentby2040,and100percentby2050,comparedto2008levels.

3KoreanRegister(2024).“InitialimplementationguidelinesfollowingtheintroductionofEUETSinthemaritimesector“.

5

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

2.ObjectivesofResearch

Today,environmentalregulationsareprogressivelymorphingintoeconomicconstraints,therebycreatingnewtradebarriers.Amidstthistransformativeperiod,thecallfordecarbonizationhasreachedunprecedentedheights.Particularlyforexport-andimport-driveneconomieslikeSouthKorea,decarbonizationisofparamountimportancetoremaingloballycompetitive.Thisendeavorrequiresaprofoundunderstandingoftheswiftlyevolvingenvironmentalregulationsonboththedomesticandinternationalfronts,apreciseassessmentofthecurrentstateofthecountry’smaritimeindustry,anddeepinsightsintofuelusepathways.Todrawtheseunderstandingsandinsights,thisstudyemploysbottom-upenergysystemmodelingtoscrutinizeSouthKorea’spresentmaritimedecarbonizationstrategiesandassesstheirfeasibility,alongwiththecountry’smaritimecarbonreductiongoals.Thisstudyalsointendstoextracttechnologicalandpolicyimplicationsnecessaryforadecarbonizedfuture.

ThisstudydistinguishesitselffrompriorstudiesonglobalmaritimeshippingbyfocusingonSouthKorea’soceangoingmerchantfleetandderivinginsightsspecifictothecountry’sshippingdecarbonizationstrategies.Moreover,emissionsareestimatedbyabottom-upmodeldevisedspecificallyfortheSouthKoreanshippingsector,basedonactualdatafromindividualshipscategorizedbyvesseltype,leadingtogreateranalyticalprecision.Inaddition,advancementsinshiptechnologyandapplicablealternativeenergysourcesareconsideredfordifferenttypesofships,enhancingthegranularityoftheresearch.Thestudyalsoaccountsforallforeseeablefutureenergysources—includingLNG,methanol,andammonia—andtheirproductionmethods,therebyaddingsignificantdepthtotheanalysis.

6

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

Ⅱ.ResearchMethodology

1.MESSAGEix-KshipModel

TheMESSAGE(ModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact)frameworkisanadvancedmathematicaltoolengineeredtoguidethedevelopmentofenergyandenvironmentalplansandpolicies.Thiscomprehensivemodelingframeworkcoverstheentirecontinuumofenergysupplyandconsumption.MESSAGEmodelmayhelpformulateandanalyzeplansonhowenergyshouldbeproducedandconsumedforandbytheSouthKoreanmaritimesector.Employingabottom-upapproach,MESSAGEtracksenergyproductionandconsumption.Inthelanguageoftechnologicalunits,itdescribesparticularjourneysofenergy,startingwithitsextractionandimportation—wheretheenergyoriginates(e.g.,crudeoil,naturalgas,renewablesources),whatformsofsecondaryenergyitisconvertedinto(e.g.,electricity,petroleumproducts),andhowitisultimatelyconsumed(e.g.,heating,transportation,lighting).Thissequentialrepresentationaidsinunderstandingtheinterconnectionsamongvariousenergyresourcesandtechnologies.Italsoenablesnumericalanalysesofthelong-termeconomicandenvironmentalramificationsofpolicychoicesmadeatspecificpointsintime.

OneofthekeyfeaturesofMESSAGEisitsuseofdynamiclinearprogramming(DLP).Thismethodologypinpointsthemostcost-effectivestrategiesbyaccountingforhowvariousconstraintsevolveovertime.Forinstance,aMESSAGEmodelcanhelpdeterminewhenandwhichnewtechnologiestoimplementtoreducefuturecarbonemissions.Recently,amoreadvancedversionnamedMESSAGEixwasreleased.Thisupdatedversionallowsuserstomanageinputdata,equations,andoutputsmoreeasily,effectively,andtransparently.

Inthisstudy,wehavebuilttheMESSAGEix-Kshipmodel,asdepictedinTable1.Itisdesignedtoanalyzetheoperational-phaseenergyconsumptionofSouthKorea’soceangoingfleetand,withlongertimehorizons,determinetheappropriatetimingandscalefordeployinglow-carbonandzero-carbonshipsinalignmentwithclimatepolicies.

[Table1]AnOverviewoftheMESSAGEix-KshipModel

ModelType

Anenergysystemmodel(technology-basedbottom-upapproach)

GeographicalScope

Operational-phaseenergyconsumptionofSouthKorea’soceangoingnationalfleet

AnalyticalConcept

Partialequilibriumanalysisonhowtomeetexogenousdemandforcargotransportatminimalcost

ModelingPeriod

Historicalreferenceyear:2008

Baseyear:2022

Projectionperiods:2025,2030,…,2070(5-yeartimeslices)

AnalyticalMethod

Costminimizationanalysiswithintertemporalchoicesavailable

Scenarios

Climatepolicy–impositionofannualcarbonemissionconstraints

7

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

Thereferenceenergysystemofanenergysystemmodelencompassesalltheenergytechnologies,commodities,levels,anddemandthatthemodelconsiders.Figure1showsthereferenceenergysystemfortheMESSAGEix-Kshipmodel,whichistheenergysystemmodelforthisstudy.Itfeaturestechnologiesforsixtypesoffuels—heavyfueloil(HFO),naturalgas,biofuels,methanol,ammonia,andhydrogen—thatareusedtodelivercargotransportservices(usefulenergyservices)acrosstentypesofships.Owingtospatialconstraints,thesixfueltechnologiesarespelledoutonlyforbulkcarriers,whilefortheothertypesofships,theyaresimplynumericallyindicated.LNGandLPGships,whichtransportliquefiednaturalgas(LNG)andliquefiedpetroleumgas(LPG),respectively,areassumedtouseonlytraditionalfuels(HFOandLNG),guidedbytechnological,economic,andsafetystandardsandregulations.Thesystemalsoincorporatesagranularclassificationoffuels—gray,blue,andgreen—dependingontheproductionmethodinitsdepictionoffinalenergysupplytovessels.(seeAppendixTable1)

[Figure1]EnergySystemfortheMESSAGEix-KshipModel

TheMESSAGEix-KshipenergysystemmodelfocusesonanalyzingenergyconsumptionandGHGemissionsduringshipoperations,deliberatelyexcludingfuelconsumptionbyauxiliaryenginesandemissionsfromnon-operationalphasessuchasdockingandmooring.ToensurereliableandmeaningfuloutcomesforSouthKorea’sinternationalmaritimesector,whichemploystheMESSAGEix-Kshipmodel,fuelsupplyisbrieflyoutlinedoverthetimehorizonofthisstudy.

8

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

2.Data

DataMatchingResults

TogatherfoundationaldataforSouthKorea’soceangoingfleet,whichformstheintendedscopeofthisstudy,weusedthe2023ShippingStatisticsfromtheKoreaShipowners’AssociationandtheWorldFleetRegisterfromClarksonsResearch(ClarksonsWFR).Giventhedifferingclassificationsystemsofthesetwosources,amorenuancedclassificationframeworkisdevelopedtoensuredataharmonization.Thisdatamatchingoperationleadstotheselectionof898SouthKoreanflaggedoceangoingvessels,eachwithatleast5,000GT.ThisselectioncloselyalignswiththescopeofvesselscoveredbytheMOFdecarbonizationstrategy,whichindicatesthatourmatchingresultsaccuratelymirrorthecompositionofthenationalfleet.

AlookattheoverallfleetcompositionrevealsavarieddistributionofshiptypesandageswithinSouthKorea’snationalfleet.Bulkcarriersformthelargestsegment,followedbycontainershipsandchemicaltankers.Thereisamarkedvarianceintheagedistributionacrossdifferentshiptypes.Notably,theproportionofshipsbuiltbefore2006,whicharenearingtheirreplacement,ishigheramongcontainershipsandchemicaltankersthanamongtherestofthefleet.Chemicaltankers,LNGcarriers,generalcargoships(breakbulkcarriers),andrefrigeratedcargoshipsshowpronouncedagedifferenceswithinthesameshipcategories.Thevariedcross-categoryproportionsandtheintra-categoryagedisparitiesunderscoretheneedtoconsiderthereplacementcyclesandmethodsforindividualships.

[Figure2]CumulativeAgeDistributionofDifferentShipTypes

Unit:perVessel

2017andbeyond

2012-2016

2007-2011

2006andbefore

9

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

VesselData

Annualtotaloperatingdistancesandcarbondioxide(CO2)emissionsacrossvariousshiptypescanbeconfirmedusingshipdata.Bulkcarriers,whichconstitutethelargestfleet,coverthegreatestannualdistances,followedbycontainershipsandpurecarcarriers(PCC).Whilecarbondioxideemissionpatternsgenerallycorrespondtosailingdistances,containershipsandtankers—crudeoiltankers,LNGtankers,chemicaltankers,producttankers—emitsignificantlymorecarbondioxideemissionsrelativetotheirseamiles.Thishighlightsthatwhiletraveldistanceisamajorfactorincarbondioxideemissions,thetypeofshipalsomakesadifference.

[Figure3]AnnualOperatingDistancesandCO2EmissionEstimatesAcrossShipTypes

EstimatedCO2AnnualTonnes(Unit:천tCO2)

AnnualDistanceTravelled(Unit:Gm)

InvestmentandFixedCosts(CostStructureConsiderations)

MESSAGE(ix),abottom-upenergysystemframework,makesdecisionsbasedoncostanalytics.Thisstudydelineatesthreeprimarycostcategories:investmentcosts,operatingandmaintenanceexpenses(orsimplyoperatingexpenses),andvariablecosts.InvestmentcostsareinformedbytheClarksonsnewbuildingpriceindex.Foroperatingexpenses(OPEX),the2022averageexpensesbyshiptypefoundinShipOperatingCostsAnnualReviewandForecast(Drewry,2023)areused.Variablecostsincludefuelcostsandnon-fuelancillarycostssuchasportandcargocharges.Fuelcostsarecalculatedbymultiplyingtraveldistanceswiththerespectivefuelcoefficients,whilenon-fuelcostestimatesarepeggedat20percentofthefuelcosts,basedonpriorresearch(Guetal.,2022).

10

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

CargoVolumeProjections

Ourmodel’sreferenceyearcargovolumeisestimatedbymultiplyingthe2022deadweighttonnes(DWT)ofeachshiptypebytherespectiveoperatingdistancebasedontheClarksonsWFR.Futuredemandforcargotransportupto2050isthenprojectedusingcargotype-specificportthroughputforecastsbytheKoreaMaritimeInstitute(KMI).Figure4illustratesthecargovolumeprojectionsusedintheMESSAGEix-Kshipmodel.Thedataindicatesdominantproportionsofbulkcarriers,containerships,andcrudeoiltankers,withthecontainercargovolumegrowingatafasterratethantheothershiptypes.

[Figure4]MESSAGEix-KshipCargoVolumeProjections

CharacteristicsandPriceOutlookforMarineFuels

TheadvantagesanddisadvantagesofthemarinefuelsconsideredinthisstudyaresummarizedinTable2.LNG,notedforitslowcarbondioxideemissionsandtechnicalreliabilityduringoperation,faceschallengessuchasmethaneslipandpricevolatility.DisparitiesinLNGbunkeringinfrastructureacrossregionsalsoremainadrawback.LPGemitslesscarbondioxideandcanbeusedtofuelitscarriers,buthasrestricteduseforothervessels.Methanol,whileeasytohandleandcompatiblewithexistinginfrastructure,suffersfromlowenergydensityandhighretrofittingcosts.Biofuelscanbeeasilyintegratedintoexistingfacilitieswithsimpleretrofittingefforts,buttheirproductionemitscarbondioxide.Hydrogenandammoniaarecarbon-freeandthereforeholdpromise,buthighcosts,formidabletechnologicalchallenges,andadearthofinfrastructureremaintoweringobstacles.

11

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

[Table2]SummaryTableofCharacterizationofMarineFuels

Fuel

Pros

Cons

LNG

•Highstabilityinuseandwell-establishedreliabletechnology

•Constructionofbunkeringinfrastructureinprogress

•Fugitivemethaneemissionsandmethaneslip;fossilfuel-based

•Inter-regioninfrastructuredisparities

•Pricevolatility

LPG

•Canbeusedasfuelduringtransitascargo

•LimitedusesoutsideLPGcarriers

•Fossilfuel-based

•Price-drivenincentives

Methanol

•EasyhandlingrelativetoLNG

•FewerGHGemissions

•Useofexistinginfrastructure

•Complexityofretrofittingandlowenergydensity

•Highshort-termcosts

•Productionlimitations

Biofuels

•Useofexistingfacilities

•Usableaftersimpleretrofitting

•Environmentalrisksfromfuelproduction,e.g.,

significantcarbonemissionsandlanduseimpact

Hydrogen

•Zeroemissionsofpollutantsandabundantavailability

•Heavytechnologyinvestment

•Efficientfuelcells

•Energy-intensiveproductionprocess

•Lackoflarge-scalebunkeringinfrastructure

•Enormousstoragecosts(-253°C)

Ammonia

•Activeproductionandtrade

•Zero-carbonfuel(greenammonia)

•Energy-intensive

•LowenergydensityrelativetoHFO

•Toxicandcorrosive

•NOxemissions

Source:Clarksons.AlternativeFuelsandESTs

FuelcostsareestimatedusingforecastsfromtheMærskMc-KinneyMøllerCenterforZeroCarbonShippingandtheInternationalEnergyAgency(IEA,2021).Figure5showcasesthefuelpriceprojectionsusedintheMESSAGEix-Kshipmodel.Acomparisonbetweenthe2025and2050fuelpriceestimatesrevealsthattechnologicaladvancementsareexpectedtopulldownthecostsofnaturalgas,hydrogen,andmethanolfuels.Despitethesetechnologicalstrides,therankingorderofcost-effectivegreenfuelsremainsunchanged:greenhydrogenatthefront,followedbygreenammoniaandgreenmethanol.Particularly,therelativelymodestdeclineinthepriceofgreenmethanolcanbeattributedtoitsrelianceongreenhydrogenasaprimaryfeedstock.

12

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

[Figure5]FuelCostsProjectionsfor2025and2050

HistoricalGHGEmissions

ThisstudyuseshistoricalvolumesofGHGemissionsaskeyinputstogeneratescenario-specificemissionconstraints.TheMinistryofOceansandFisheriesreportsthatin2008,SouthKorea’semissionsfromshippingtotaled28MtCO2eq.Furthermore,2023UNCTADdataindicatesthatemissionslinkedtoSouthKoreashipownershipstoodat24MtCO2eqin2012,risingtoroughly28MtCO2eqby2022.

DetaileddataontheSouthKoreaninternationalshippingsector’senergyconsumptionandGHGemissionsduringtheoperationalphaseisfarfromreadilyavailable.Thisstudycircumventsthisdifficultybyfirstlyidentifyingafleetof898SouthKorean-flaggedocean-goingmerchantvessels,basedontheClarksonsWFR.Itthenreverse-calculatestheirfuelconsumptioninnetcalorificvaluesonthebasisoftheircarbondioxideemissions.Finally,thestudymultipliesthefuelconsumptionestimatesbytheemissionfactors(EF)forcarbondioxide(CO2),methane(CH4),andnitrousoxide(N2O)andtheirrespectiveglobalwarmingpotentials(GWP)toobtainthetotalandsegment-specificemissionsincarbondioxideequivalentterms.Thesefindings,segmentedbyvesseltypeandGHGcategory,arepresentedinTable3.

13

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

[Table3]2022GHGEmissionsbyVesselTypeandbyGHG

GHG

VesselType

CO2(tCO2eq)

CH4(tCO2eq)

N2O(tCO2eq)

LNGship

3,281,630

173,225

47,239

Container

6,410,116

2,985

98,560

Crude

2,945,376

31,180

44,728

Bulk

6,719,395

3,129

103,316

PCC

1,993,898

928

30,658

LPGship

773,441

360

11,892

GeneralCargo

369,344

172

5,679

Reefer

192,641

90

2,962

ChemicalTanker

1,932,872

900

29,719

ProductTanker

1,394,571

649

21,443

Total

26,013,285

213,618

396,196

3.GHGEmissionsReductionScenarios

ThisstudyconstructsGHGemissionsreductionscenariosinreferencetothetargetsestablishedbytheIMOandtheSouthKoreanMinistryofOceansandFisheries(MOF).Specifically,thescenariosemployfiguresfromtheIMOandMOFfortheirreductiontargets,whiletheirassumptionsonefficiencyimprovementsareinformedbytheannualpaceofcarbonintensityreductionpresentedinTheFourthIMOGreenhouseGasStudy(2020),whichrangesfrom1to2percentperyear.

[Table4]OverviewofGHGEmissionsReductionScenarios

Scenarios

Efficiency

Improvement4

ReductionTargets

(percentagereduction)

Remarks

Baseline(BAU)

1%

(everyyear)

Noreduction

Animaginaryfuturewithoutanyclimatepolicyintervention

IMO_Net50

1%

(everyyear)

50%by2050relativeto2008

InitialIMOStrategyadoptedbyMEPC72in2018

(72ndsessionoftheMarineEnvironmentProtectionCommittee)

IMO_Net0

2%

(everyyear)

30%by2030relativeto200880%by2040relativeto2008100%by2050relativeto2008

RevisedIMOGHGStrategyadoptedbyMEPC80in2023

MOF_Net0

2%

(everyyear)

60%by2030relativeto200880%by2040relativeto2008100%by2050relativeto2008

MOF’s2023strategyfordecarbonizationofinternationalshipping

4ThisstudydoesnotregardtherepairandretrofittingofoutmodedshipsastechnologiestodirectlyreduceGHGemissionsbutasmeansofefficiencyimprovement.

14

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

[Figure6]Scenario-SpecificGHGEmissionsReductionPathways

30%reductionfrom2008

60%reductionfrom2008

80%reductionfrom2008

Figure6succinctlyillustratestheGHGemissionconstraintsfortheindividualscenarios.Baselineemissionsin2008areassumedat28.8MtCO2eq,andthereductiontargetsbetweenthekeyyearsarepresumedtofollowlineartrajectories.Althoughthe2018IMOstrategy,whichaimedfora50-percentreductionby2050relativeto2008,hasbeensupersededbythe2023IMOnet-zerostrategy,thisstudystillexaminesitasaseparatescenario(ScenarioIMO_Net50).Theinclusionofthisscenarioaimstoanalyzeitsfuelcompositionandrelativelylenienttargetsincontrasttothoseofthemorestringentnet-zeroscenarios.ScenarioIMO_Net0andScenarioMOF_Net0represent,respectively,the2023IMOGHGemissionsreductionstrategyandthe2023MOFinternationalshippingdecarbonizationstrategy.Theseambitiousstrategiessharethesameultimategoalofnetzeroby2050butdivergeintheirpathwaysuntil2040.TheMOFstrategyprojectsafasterreductionduringthe2030-2040period(thedifferentialisestimatedat64.35MtCO2eq,asdepictedbythetriangularareainthegraph).

15

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

Ⅲ.AnalysisResults

1.TotalSystemCostsandGHGEmissionVolumes

Inthisstudy,totalsystemcostsrepresentthecumulativeexpensesoverthe2026-2050periodascalculatedbytheMESSAGEix-Kshipmodel,whichencompassesinvestments,operatingexpenses(OPEX),fuelcosts,andfixedcosts.Forthebaselinescenario(ScenarioBAU),thetotalsystemcostisprojectedatapproximatelyUSD163billion.InScenarioIMO_Net50,thecostincreasestoUSD173billion,andunderScenarioIMO_Net0,itrisesfurthertoUSD193billion.Theserisesincostsmirrortheescalatingrigoroftheirrespectivereductiontargets.

ThetotalsystemcostculminatesatUSD198billionunderScenarioMOF_Net0,drivenbyitsambitiousintermediatetargetofa60-percentcutby2030.Forcontext,ScenarioIMO_Net0aimsfora30-percentcutby2030,withbothIMO_Net0andMOF_Net0targetingan80-percentcurtailmentby2040.ThisstudyassumesthatunderbothScenariosIMO_Net0andMOF_Net0,carboncanbecapturedthroughdirectaircapture(DAC)technologyatacostofUSD1,000pertonne,aidingtheirjourneytowardszeroemissionsby2050.ThisassumptionabouttheuseofDACtechnologyresultsinanadditionalestimatedexpenditureofapproximatelyUSD10billion.

[Figure7]TotalSystemCostsbyScenario

CostsexceptforDACDACCosts

16

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

RegardingGHGemissions,thebaselinescenario(ScenarioBAU)startsat26.31MtCO2eqin2022,withemissionsincreasingprogressivelyto29.96MtCO2eqby2050.ScenarioIMO_Net50seesadecreaseinemissionsstartingin2025toreach14.30MtCO2eq,halfthe2008level,by2050.ThemoreambitiousIMOscenario(IMO_Net0)projectsemissionsat20.02MtCO2eqby2030,withagoalofachievingcarbonneutralityby2050.ScenarioMOF_Net0sharesthesame2050goalwithitsIMOnet-zerocounterpart,butfollowsamoredrasticreductionpath,droppingemissionsto11.44MtCO2eqby2030andreachingnetzeroby2050.(seeFigure6)

ThevolumesofGHGcaptureacrossthethreescenarioswithpolicyinterventionareillustratedinFigure8.ScenarioIMO_Net50leadsincarboncapture,withrecordsof2.07MtCO2eqin2040and5.43MtCO2eqin2050.Thisscenarioleveragesship-basedcarboncaptureandstorage(SCCS)technologyaboardvesselsfueledbyHFOorLNG,insteadofDACtechnology.Incontrast,ScenariosIMO_Net0andMOF_Net0,drivenbytheswiftexpansionofecofriendlyfleets,capturefewerGHGs.Specifically,ScenarioIMO_Net0captures0.40MtCO2eqin2040and2.82MtCO2eqin2050,andScenarioMOF_Net0sequestrates0.4MtCO2eqin2040and2.74MtCO2eqin2050.

[Figure8]GHGEmissionsandCapturesbyScenario

Figure9showcasesthevesseltype-specificemissionvolumesacrossthefourscenarios.BulkcarriersemitthemostGHGs,followedbycontainerships,crudeoiltankers,LNGtankers,chemicaltankers,productcarriers,andpurecarcarriers(PCCs).Theyear2050seesonlytwotypesofvesselsemitGHGsundertheIMO_Net0andMOF_Net0scenarios:LNGandLPGcarriers.Thisisbecausethesetwocategoriesofshipsareassumedtouseonlyconventionalfuels(HFOandnaturalgas)inconsiderationoftechnological,economic,andsafetyregulations.

17

AStudyonSouthKorea’s2050NetZeroPathwayforShipping

[Figure9]VesselType-SpecificGHGEmissionVolumesAcrossScenarios

2.FuelConsumptionandComposition

ThefinalenergyconsumptionbyenergysourceinSouthKorea’sinternationalshippingsectoracrossthefourscenariosareillustratedfordifferenttimeslicesinFigure10.Underthebusinessasusual(BAU)scenario,heavyfueloil(HFO)andLNGremain,albeitwithcontrastingtrends:HFOusegraduallydeclinesto7,546ktoein2050whileLNGconsumptionprogressivelyrisesovertimeandhits1,888ktoein2050.TheIMO_Net50scenariofeaturesadrasticdropinHFOconsumption,alongsideuptakesinLNG,methanol,ammonia,andbiofuels.By2050,HFOusagesharplyfallsto

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论