数学学案:空间向量的线性运算_第1页
数学学案:空间向量的线性运算_第2页
数学学案:空间向量的线性运算_第3页
数学学案:空间向量的线性运算_第4页
数学学案:空间向量的线性运算_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精数学人教B选修2-1第三章3。1.1空间向量的线性运算1.理解空间向量的概念,掌握空间向量的几何表示法和字母表示法.2.会用图形说明空间向量加法、减法、数乘向量及它们的运算律.3.能运用空间向量的运算意义及运算律解决简单的立体几何中的问题.1.空间向量的概念(1)向量:在空间中,具有______和______的量.(2)相等的向量(同一向量):同向且等长的有向线段.(3)零向量:起点与终点____的向量.(手写记作)(4)向量a的长度或模:表示向量a的有向线段的长度,记作________.(5)向量的基线:表示向量的有向线段所在的______.(6)共线向量或平行向量:基线________的空间向量,规定:零向量与任意向量______.在空间中,A为向量的起点,B为向量的终点.【做一做1】正方体ABCD-A′B′C′D′中与向量相等的向量有__________个.2.空间向量的加法、减法和数乘向量的运算(1)加法:a+b=______.(2)减法:a-b=______。(3)数乘:λa:|λa|=______,当λ>0时,λa与a方向______;当λ<0时,λa与a方向______;当λ=0时,λa为____向量.(4)线性运算律①加法交换律:a+b=______;②加法结合律:(a+b)+c=________;③分配律:(λ+μ)a=λa+μa,λ(a+b)=__________.(1)平面向量求和的三角形法则和平行四边形法则,对空间向量也同样成立.(2)三个不共面的向量和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.【做一做2-1】在平行六面体ABCD-A1B1C1D1中,=a,=b,=c,则等于()A.a+b+cB.a+b-cC.a-b-cD.-a+b+c【做一做2-2】在棱长为1的正方体ABCD-A1B1C1D1中,|-+|=__________。1.如何理解空间向量的有关概念?剖析:(1)空间向量的概念及表示与平面向量一样.(2)零向量的方向是任意的,而不是零向量没有方向.(3)向量只是用有向线段来表示,但向量不是有向线段,如速度是向量.(4)共线向量或平行向量,其基线平行或重合均可.共线向量的起点和终点未必共线,平行向量的基线未必平行(可能重合),应特别注意零向量与任意向量共线.2.空间向量加法的运算要注意什么?剖析:(1)首尾相接的若干向量之和,等于由起始向量的起点指向最后一个向量的终点的向量.如:+++…+=。因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:+++…++=0.(3)平面中两个向量相加的平行四边形法则及三角形法则在空间中仍然成立.题型一空间向量的概念【例1】下列命题是真命题的序号是__________.①在正方体ABCD-A1B1C1D1中,与这两个向量不是共线向量.②若向量a与b平行,则a,b的方向相同或相反.③若向量,满足||>||,且与同向,则>。④若向量a=b,则|a|=|b|。反思:注意空间向量概念的理解,注意区别向量与向量的模以及向量的手写体与印刷体.题型二空间向量的线性运算【例2】已知在平行六面体ABCD-A′B′C′D′中,M为CC′的中点(如图),用图中向量表示运算结果.(1)+;(2)++.分析:(1)利用=;(2)利用=.反思:注意结合图形使用相等向量转化.题型三化简向量表达式【例3】化简向量-++。分析:注意使用相反向量-=。反思:空间向量的减法运算注意使用相反向量,无图形的空间向量的加减法运算注意使用交换律和结合律,同时注意运算结果是0,而不是0.1两向量共线是两向量相等的__________条件.2M,N分别是四面体ABCD的棱AB,CD的中点,则=________(+).3在长方体ABCD-A1B1C1D1中,分别写出与向量共线的向量和相等的向量.4在平行六面体ABCD-A1B1C1D1中化简下列各式:(1)-;(2)++.答案:基础知识·梳理1.(1)大小方向(3)重合(4)|a|(5)直线(6)平行或重合共线【做一做1】32.(1)eq\o(OB,\s\up6(→))(2)eq\o(CA,\s\up6(→))(3)|λ||a|相同相反零(4)①b+a②a+(b+c)③λa+λb【做一做2-1】C画图可得eq\o(D1B,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(AD1,\s\up6(→))=eq\o(AB,\s\up6(→))-(eq\o(AA1,\s\up6(→))+eq\o(A1D1,\s\up6(→)))=eq\o(AB,\s\up6(→))-(eq\o(AA1,\s\up6(→))+eq\o(AD,\s\up6(→)))=a-b-c。【做一做2-2】eq\r(2)典型例题·领悟【例1】④①因为eq\o(AB,\s\up6(→))与eq\o(CD,\s\up6(→))基线平行,所以这两个向量是共线向量;②若向量a=0,则a与b平行,但是不能说零向量与某一向量方向相同或相反,否则与零向量的方向是任意的矛盾;③向量不能比较大小;④根据向量相等的定义,知此命题正确.【例2】解:(1)eq\o(AB,\s\up6(→))+=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))=eq\o(AC,\s\up6(→)).(2)eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\f(1,2)=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\f(1,2)=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CM,\s\up6(→))=eq\o(AM,\s\up6(→))。【例3】解:eq\o(BC,\s\up6(→))-eq\o(BE,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DE,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(EB,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DE,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DE,\s\up6(→))+eq\o(EB,\s\up6(→))=0.随堂练习·巩固1.必要不充分2.eq\f(1,2)3.解:与向量eq\o(AB,\s\up6(→))共线的向量有:eq\o(BA,\s\up6(→)),,,eq\o(DC,\s\up6(→)),eq\o(CD,\s\up6(→)),,;与向量eq\o(AB,\s\up6(→))相等的向量有:,eq\o(DC,\s\up6(→)),。4.解:(1)eq\o(AB,\s\up6(→))-=eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))=eq\o(DB,\s\up6(→));(2)eq\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论